| A. | (x-2)2+y2=1 | B. | (x+2)2+y2=1 | C. | (x-1)2+y2=1 | D. | (x+1)2+y2=1 |
分析 由圆心在x轴上,设出圆心的坐标为(a,0),且a大于0,根据已知的半径,表示出圆的标准方程,由直线与圆相切,得到圆心到直线的距离d等于半径r,利用点到直线的距离公式列出关于a的方程,求出方程的解得到a的值,进而确定出圆的标准方程.
解答 解:根据题意设圆心坐标为(a,0)(a<0),半径r=1,
∴所求圆的方程为(x-a)2+y2=1,
又直线3x+4y+1=0与所求圆相切,
∴圆心到直线的距离d=$\frac{|3a+1|}{5}$=r=1,
整理得:3a+1=5或3a+1=-5,
解得:a=$\frac{4}{3}$(舍去)或a=-2,
则所求圆的方程为(x+2)2+y2=1.
故选:B.
点评 此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,以及点到直线的距离公式,当直线与圆相切时,圆心到直线的距离等于圆的半径,即d=r,熟练运用此性质是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①②④ | B. | ②③⑤ | C. | ①③⑤ | D. | ②④⑤ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{8}$ | B. | $\frac{π}{9}$ | C. | $\frac{π}{24}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com