17£®º¯Êýy=f£¨x£©µÄ¶¨ÒåÓòD={x|x¡ÊR£¬ÇÒx¡Ù0}£¬¶Ô¶¨ÒåÓòDÄÚÈÎÒâÁ½¸öʵÊýx1£¬x2£¬¶¼ÓÐf£¨x1£©+f£¨x2£©=f£¨x1x2£©³ÉÁ¢£®
£¨1£©Çóf£¨-1£©µÄÖµ²¢Ö¤Ã÷y=f£¨x£©ÎªÅ¼º¯Êý£»
£¨2£©Èôf£¨-4£©=4£¬¼Ç an=£¨-1£©n•f£¨2n£©£¨n¡ÊN£¬n¡Ý1£©£¬ÇóÊýÁÐ{an}µÄǰ2015ÏîµÄºÍS2015£»
£¨3£©£¨Àí£© Èôx£¾1ʱ£¬f£¨x£©£¼0£¬ÇÒ²»µÈʽ$f£¨\sqrt{{x^2}+{y^2}}£©¡Üf£¨\sqrt{xy}£©+f£¨a£©$¶ÔÈÎÒâÕýʵÊýx£¬yºã³ÉÁ¢£¬Çó·ÇÁãʵÊýaµÄȡֵ·¶Î§£®
£¨ÎÄ£©Èôx£¾1ʱ£¬f£¨x£©£¼0£¬½â¹ØÓÚxµÄ²»µÈʽ f£¨x-3£©¡Ý0£®

·ÖÎö £¨1£©ÀûÓø³Öµ·¨Çóf£¨-1£©µÄÖµ£¬ÀûÓÃżº¯ÊýµÄ¶¨ÒåÅжϺ¯ÊýΪżº¯Êý£»
£¨2£©Ïȸù¾Ýf£¨n£©ÇóÊýÁÐ{an}µÄͨÏ½ø¶ø¿ÉÇóÊýÁÐ{an}µÄǰ2015ÏîµÄºÍS2015£»
 £¨3£©ÏÈ˵Ã÷f£¨x£©£¾0£¬£¨0£¼x£¼1£©£¬ÀûÓûù±¾²»µÈʽÇó³ö¼´¿É£¬£¨ÎÄ£©¸ù¾Ýº¯ÊýΪżº¯Êý¼´f£¨x-3£©¡Ý0£¬¿ÉÓÐ0£¼|x-3|¡Ü1£¬´Ó¶ø¿É½â²»µÈʽ£®

½â´ð ½â£º£¨1£©¸³ÖµµÃf£¨1£©=f£¨-1£©=0£¬
¡ßf£¨-x£©=f£¨-1£©+f£¨x£©=f£¨x£©
¡àº¯ÊýΪżº¯Êý£»          
£¨2£©f£¨-4£©=4µÃf£¨2£©=2£¬f£¨2n£©=f£¨2n-1£©+f£¨2£©£¬
¡àf£¨2n£©=2n£¬
¡àan=2•£¨-1£©nn£¬
¡àS2015=-2016£»
£¨3£©Éè $0£¼x£¼1£¬Ôò\frac{1}{x}£¾1$£¬
$0=f£¨1£©=f£¨x£©+f£¨\frac{1}{x}£©$£¬
µÃf£¨x£©£¾0£¨0£¼x£¼1£©£¬
£¨Àí£©$f£¨\sqrt{{x^2}+{y^2}}£©¡Üf£¨\sqrt{xy}£©+f£¨a£©$£¬
µÃ£º$f£¨\frac{{\sqrt{{x^2}+{y^2}}}}{{a\sqrt{xy}}}£©¡Ü0$?$\frac{{\sqrt{{x^2}+{y^2}}}}{{|a|\sqrt{xy}}}¡Ý1$$|a|¡Ü\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{xy}}}$ºã³ÉÁ¢£¬
ÓÖ$\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{xy}}}¡Ý\sqrt{2}$£¬´Ó¶ø$0£¼|a|¡Ü\sqrt{2}$£®
£¨ÎÄ£©f£¨x-3£©¡Ý0?0£¼|x-3|¡Ü1?2¡Üx£¼3»ò3£¼x¡Ü4£®

µãÆÀ ±¾ÌâµÄ¿¼µãÊǺ¯Êýºã³ÉÁ¢ÎÊÌ⣬Ö÷Òª¿¼²éºÏÊʵÄÐÎʽ£¬¿¼²éÊýÁÐÓ뺯ÊýµÄ¹ØÏµ£¬¿¼²éºã³ÉÁ¢ÎÊÌ⣬¹Ø¼üÊÇ·ÖÀë²ÎÊý£¬ÀûÓÃ×îÖµ·¨Çó½â£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®¶Ôij°àµÄÈ«ÌåѧÉúÒ»´ÎÊýѧ²âÊԳɼ¨½øÐзÖÎö£¬Êý¾ÝµÄ·Ö×éÇé¿öΪ£º[50£¬60£©[60£¬70£©[70£¬80£©[80£¬90£©[90£¬100£©£¬ÆµÂÊ·Ö²¼Ö±·½Í¼Èçͼ£º
£¨¢ñ£©Çó³É¼¨ÂäÔÚ[80£¬90£©Ö®¼äµÄƵÂÊ£»
£¨¢ò£©ÈôµÍÓÚ60·ÖµÄÈËÊýÊÇ6ÈË£¬Ôò¸Ã°àѧÉúÈËÊýÊǶàÉÙ£¿
£¨¢ó£©ÇëÄã¹À¼ÆÈ«°àµÄƽ¾ù·Ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª$\frac{¦Ð}{4}£¼x£¼\frac{¦Ð}{2}$£¬cos£¨x-$\frac{¦Ð}{4}$£©=$\frac{4}{5}$£®
£¨¢ñ£©Çósin£¨x+$\frac{¦Ð}{12}$£©µÄÖµ£»
£¨¢ò£©Çó$\frac{sin2x£¨1+tanx£©}{1-tanx}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®º¯Êýy=f£¨x£©µÄ·´º¯ÊýΪy=f-1£¨x£©£¬Èç¹ûº¯Êýy=f£¨x£©µÄͼÏó¹ýµã£¨1£¬4£©£¬ÄÇôº¯Êýy=f-1£¨2x£©µÄͼÏóÒ»¶¨¹ýµã£¨2£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÔÚ¡÷ABCÖУ¬C£¾$\frac{¦Ð}{2}$£¬Èôº¯Êýy=f£¨x£©ÔÚ[0£¬1]ÉÏΪµ¥µ÷µÝ¼õº¯Êý£¬ÔòÏÂÁÐÃüÌâÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®f£¨cosA£©£¾f£¨cosB£©B£®f£¨sinA£©£¾f£¨sinB£©C£®f£¨sinA£©£¾f£¨cosB£©D£®f£¨sinA£©£¼f£¨cosB£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÖÐÐÄÔÚÔ­µãµÄË«ÇúÏßµÄÓÒ½¹µãΪF£¨2£¬0£©£¬ÓÒ¶¥µãΪA£¨1£¬0£©£®
£¨1£©ÊÔÇóË«ÇúÏߵķ½³Ì£»
£¨2£©¹ý×ó½¹µã×÷Çãб½ÇΪ$\frac{¦Ð}{6}$µÄÏÒMN£¬ÊÔÇó¡÷OMNµÄÃæ»ý£¨OÎª×ø±êÔ­µã£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÊýÁÐ{an}ÖУ¬${a_1}=\frac{1}{2}£¬{a_n}=\frac{1}{{1-{a_{n-1}}}}£¨n¡Ý2£¬n¡ÊN*£©$£¬Ôòa2015=£¨¡¡¡¡£©
A£®2B£®-1C£®1D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖª$sin£¨¦Á-\frac{¦Ð}{12}£©=\frac{1}{3}$£¬Ôò$cos£¨\frac{5¦Ð}{12}+¦Á£©$=$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªÊýÁÐ{an}ÊÇÊ×Ïî¡¢¹«±È¶¼ÎªÕýÊýµÄµÈ±ÈÊýÁУ¬ÊýÁÐ$\left\{{\frac{1}{{{a_n}•{a_{n+1}}}}}\right\}$µÄǰnÏîºÍΪ$\frac{{8£¨{4^n}-1£©}}{3}$£¬ÔòÊýÁÐ{an}µÄͨÏʽΪ${a_n}={£¨{\frac{1}{2}}£©^n}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸