精英家教网 > 高中数学 > 题目详情

已知函数f(x)=lnx,,设F(x)=f(x)+g(x).

(Ⅰ)求函数F(x)的单调区间;

(Ⅱ)若以函数y=F(x),x∈(0,3]图像上任意一点P(x0,y0)为切点的切线的斜率k≤恒成立,求实数a的最小值;

(Ⅲ)是否存在实数m,使得函数的图像与函数y=f(1+x2)的图像恰有四个不同的交点?若存在,求出实数m的取值范围;若不存在,说明理由.

答案:
解析:

  解:(Ⅰ)

  ∵,由,∴上单调递增;

  由,∴上单调递减.

  ∴的单调递减区间为,单调递增区间为. 4分

  (Ⅱ)恒成立

  当时,取得最大值,∴,∴. 8分

  (Ⅲ)若的图象与的图象恰有四个不同得交点,即有四个不同的根,亦即有四个不同的根.

  令,则

  当变化时,的变化情况如下表:

由表格知:

又∵可知,当时,

恰有四个不同的交点.

∴当时,

的图象与的图象恰有四个不同的交点. 14分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2x+1,g(x)=ln(x+1).

(1)求函数y=g(x)-x在[0,1]上的最小值;

(2)当a≥时,函数t(x)=f(x)+g(x)的图像记为曲线C,曲线C在点(0,1)处的切线为l,是否存在a使l与曲线C有且仅有一个公共点?若存在,求出所有a的值;否则,说明理由.

(3)当x≥0时,g(x)≥-f(x)+恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2014届湖北省大治二中高二3月联考文科数学试卷(解析版) 题型:解答题

已知函数f(x)=x3+x-16,

(1)求曲线y=f(x)在点(2,-6)处的切线的方程;

(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;

 

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高二下期第一次月考理科数学试卷(解析版) 题型:解答题

已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.

(1)求使直线l和y=f(x)相切且以P为切点的直线方程;

(2)求使直线l和y=f(x)相切且切点异于P的直线方程.

 

查看答案和解析>>

科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题

已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=时,y=f(x)有极值.

(1)求a、b、c的值;

(2)求y=f(x)在[-3,1]上的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题

已知函数f(x)=x3-2x2+ax(x∈R,a∈R),在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直.

(1)求a的值和切线l的方程;

(2)设曲线y=f(x)上任一点处的切线的倾斜角为θ,求θ的取值范围

 

查看答案和解析>>

同步练习册答案