精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2+2x-4y=0,若圆C的切线在x轴和y轴上截距相等,求切线的方程.
圆x2+y2+2x-4y=0化为标准方程为(x+1)2+(y-2)2=5,
∴圆心C(-1,2),半径r=
5

设圆C的切线在x轴和y轴上的截距分别为a,b,
当a=b=0时,切线方程可设为y=kx,即kx-y=0,
由点到直线的距离公式得:
5
=
|-k-2|
k2+1

解得:k=
1
2

此时切线的方程是y=
1
2
x;
当a=b≠0时,切线方程为
x
a
+
y
b
=1,即x+y-a=0,
由点到直线的距离公式得:
5
=
|-1+2-a|
12+12

解得:a=1±
10

此时切线的方程为x+y-1±
10
=0,
综上,所求切线方程为y=
1
2
x或x+y-1±
10
=0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y-4=0上,则圆C的方程为(  )
A.(x+3)2+(y-1)2=2B.(x-3)2+(y+1)2=2
C.(x-3)2+(y-1)2=2D.(x+3)2+(y+1)2=2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与圆C1:x2+y2-6x+4y+12=0,C2:x2+y2-14x-2y+14=0都相切的直线有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆O:x2+y2=4,动点P(t,0)(-2≤t≤2),曲线C:y=3|x-t|.曲线C与圆O相交于两个不同的点M,N
(1)若t=1,求线段MN的中点P的坐标;
(2)求证:线段MN的长度为定值;
(3)若t=
4
3
,m,n,s,p均为正整数.试问:曲线C上是否存在两点A(m,n),B(s,p)(11),使得圆O上任意一点到点A的距离与到点B的距离之比为定值k(k>1)?若存在请求出所有的点A,B;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l:(2m+1)x+(m+1)y=7m+4,圆C:(x-1)2+(y-2)2=25.
(1)判断直线l和圆C的位置关系;
(2)若直线l和圆C相交,求相交弦长最小时m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆x2+y2=8内一点P0(-1,2),AB为过点P0且倾斜角为α的弦.
(1)当α=135°时,求AB的长.
(2)当弦AB最长时,求出直线AB的方程.
(3)当弦AB被点P0平分时,求出直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

圆(x-3)2+(y-3)2=8与直线3x+十y+6=0的位置关系是(  )
A.相交B.相切C.相离D.无法确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C的圆心为原点O,且与直线x+y+4
2
=0
相切.
(1)求圆C的方程;
(2)点P在直线x=8上,过P点引圆C的两条切线PA,PB,切点为A,B,求证:直线AB恒过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设直线x+2y+4=0和圆x2+y2-2x-15=0相交于点A,B.
(1)求弦AB的垂直平分线方程;
(2)求弦AB的长.

查看答案和解析>>

同步练习册答案