精英家教网 > 高中数学 > 题目详情

(14分)已知函数

(Ⅰ)求函数的最小值;

(Ⅱ)求证:

(Ⅲ)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设函数是否存在“分界线”?若存在,求出的值;若不存在,请说明理由.

 

【答案】

(Ⅰ)的最小值为;(Ⅱ)详见解析;(Ⅲ)

【解析】

试题分析:(Ⅰ)求导得:,由此可得函数上递减,上递增,

从而得的最小值为

(Ⅱ)注意用第(Ⅰ)小题的结果.由(Ⅰ)知.这个不等式如何用?结合所在证的不等式可以看出,可以两端同时乘以变形为:,把换成,在这个不等式中令然后将各不等式相乘即得.

(Ⅲ)结合题中定义可知,分界线就是一条把两个函数的图象分开的直线.那么如何确定两个函数是否存在分界线?显然,如果两个函数的图象没有公共点,则它们有无数条分界线,如果两个函数至少有两个公共点,则它们没有分界线.所以接下来我们就研究这两个函数是否有公共点.为此设.通过求导可得当取得最小值0,这说明的图象在处有公共点.如果它们存在分界线,则这条分界线必过该点.所以设的“分界线”方程为.由于的最小值为0,所以,所以分界线必满足.下面就利用这两个不等式来确定的值.

试题解析:(Ⅰ)解:因为,令,解得

,解得

所以函数上递减,上递增,

所以的最小值为.                            3分

(Ⅱ)证明:由(Ⅰ)知函数取得最小值,所以,即

两端同时乘以,把换成,当且仅当时等号成立.

得,

将上式相乘得

.         9分

(Ⅲ)设.

所以当时,;当时,

因此取得最小值0,则的图象在处有公共点

存在 “分界线”,方程为.

恒成立,

恒成立.

所以成立.因此.

下面证明成立.

.

所以当时,;当时,.

因此取得最大值0,则成立.

所以.                                   14分

考点:1、导数的应用;2、函数与不等式;3、新定义概念.

 

练习册系列答案
相关习题

科目:高中数学 来源:2011届广东省高三高考全真模拟试卷数学理卷一 题型:解答题

(本小题满分14分)
已知函数为自然对数的底数).
(1)求函数的最小值;
(2)若,证明:

查看答案和解析>>

科目:高中数学 来源:2011届北京市西城区高三二模考试理科数学 题型:解答题

((本小题满分14分)
已知函数,其中为自然对数的底数.
(Ⅰ)当时,求曲线处的切线与坐标轴围成的面积;
(Ⅱ)若函数存在一个极大值点和一个极小值点,且极大值与极小值的积为,求的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省漳州市四地七校高三第四次联考理科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知函数同时满足如下三个条件:①定义域为;②是偶函数;③时,,其中.

(Ⅰ)求上的解析式,并求出函数的最大值;

(Ⅱ)当时,函数,若的图象恒在直线上方,求实数的取值范围(其中为自然对数的底数, ).

 

查看答案和解析>>

科目:高中数学 来源:2010年福建省高三模拟考试数学(理科)试题 题型:解答题

(本小题满分14分)

已知函数

(Ⅰ)若的极值点,求实数的值;

(Ⅱ)若上为增函数,求实数的取值范围;

(Ⅲ)若时,方程有实根,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010年广东省高二期末测试数学(理) 题型:解答题

(本题满分14分)已知函数,实数为常数).

(Ⅰ)若,求函数的极值;

(Ⅱ)若,讨论函数的单调性.

 

 

查看答案和解析>>

同步练习册答案