精英家教网 > 高中数学 > 题目详情
定义:若?x∈R,使得f(x)=x成立,则称x为函数y=f(x)的一个不动点
(1)下列函数不存在不动点的是______(单选)
   A.f(x)=1-logax(a>1)B.f(x)=x2+(b+2)x+1(b>1)C.f(x)=lnx        D.f(x)=x
(2)设f(x)=2lnx-ax2(a∈R),求f(x)的极值
(3)设(e为自然对数的底数),当a>0时,讨论函数g(x)是否存在不动点,若存在求出a的范围,若不存在说明理由.
【答案】分析:(1)令x=1,可判断A中函数是否存在不动点,构造函数(x)=f(x)-x,判断函数是否存在零点,可判断B中函数是否存在不动点,根据不动点的定义,可判断D中函数有无数个不动点;
(2)求出函数的导函数,分析函数的单调性,进而可得函数的极值点,代入解析式可得函数的极值.
(3)若函数存在不动点,则方程g(x)=x有解,即有解,利用导数法求出的最值,比较后可得结论.
解答:解.(1)当x=1时,f(x)=1-logax=x,故A中函数f(x)存在不动点;
令g(x)=f(x)-x=x2+(b+1)x+1
∵b>1
∴△=(b+1)2-4>0
则方程g(x)=0有根,即B中函数f(x)存在不动点;
D中任意x值均为不动点,
故选C┅┅(4分)
(2)
①当a=0时,,f(x)在(0,+∞)上位增函数,无极值;
②当a<0时,f'(x)>0恒成立,f(x)在(0,+∞)上位增函数,无极值;
③当a>0时,f'(x)=0,得,列表如下:
X
f'(x)+_
f(x)极大值
时,f(x)有极大值=
综上,当a≤0时无极值,当a>0时f(x)有极大值=.┅┅(10分)
(3)假设存在不动点,则方程g(x)=x有解,即有解.
设h(x)=,(a>0)有(2)可知h(x)极大值==,下面判断h(x)极大值是否大于0,设,(a>0),,列表如下:
A(0,e))e(e,+∞)
p'(a)+-
P(a)极大值
当a=e时,p(a)极大值=p(e)=<0,所以恒成立,即h(x)极大值小于零,所以g(x)无不动点.┅┅(14分)
点评:本题考查的知识点是函数在某点取得极值的条件,函数的值,利用导数研究函数的单调性,导数是高考必考内容,其经典题型分析单调性,求极值,求最值一定要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①命题“对任意的x∈R,x2≥0”的否定是“存在x∈R,使x2<0”;
②定义在[0,
π
2
]
的函数f(x)=sinx,若0<x1x2
π
2
,则必存在x∈(x1,x2),使(x1-x2)cosx=sinx1-sinx2成立;
③若a,b∈[0,1],则不等式a2+b2
1
4
成立的概率是
π
4

④设函数f(x)=xsinx,x∈[-
π
2
π
2
]
,若f(x1)>f(x2),则不等式x12>x22必定成立.
其中真命题的序号是
 
.(填上所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省六安市徐集中学高三(上)摸底数学试卷(理科)(解析版) 题型:解答题

若定义在R上的函数f(x)满足:存在x∈R,使f(x)=x成立,则称x是函数f(x)的一个不动点.
(I)求函数g(x)=x3-2x的不动点;
(II)若函数h(x)=ax2+bx-b有不动点-3和1,求h(-1)的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省六安市徐集中学高三(上)摸底数学试卷(文科)(解析版) 题型:解答题

若定义在R上的函数f(x)满足:存在x∈R,使f(x)=x成立,则称x是函数f(x)的一个不动点.
(I)求函数g(x)=x3-2x的不动点;
(II)若函数h(x)=ax2+bx-b有不动点-3和1,求h(-1)的值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆十一中高一(上)数学单元测试10(集合到等比数列)(解析版) 题型:解答题

对于函数f(x),若存在x∈R,使f(x)=x成立,则称点(x,f(x))为函数f(x)的不动点.
(1)若函数f(x)=ax2+bx-2b(a≠0)有不动点(0,0)和(1,1),求f(x)的解析表达式;
(2)若对于任意实数b,函数f(x)=ax2+bx-2b总有2个相异的不动点,求实数a的取值范围;
(3)若定义在R上的函数g(x)满足g(-x)=-g(x),且g(x)存在(有限的)n个不动点,求证:n必为奇数.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省上饶市重点中学高三第二次联考数学试卷(文科)(解析版) 题型:解答题

给出下列四个命题:
①命题“对任意的x∈R,x2≥0”的否定是“存在x∈R,使x2<0”;
②定义在[的函数f(x)=sinx,若,则必存在x∈(x1,x2),使(x1-x2)cosx=sinx1-sinx2成立;
③若a,b∈[0,1],则不等式成立的概率是
④设函数f(x)=xsinx,,若f(x1)>f(x2),则不等式x12>x22必定成立.
其中真命题的序号是    .(填上所有真命题的序号)

查看答案和解析>>

同步练习册答案