精英家教网 > 高中数学 > 题目详情
6.已知正数x、y、z满足x2+y2+z2=1,则S=$\frac{1}{{2xy{z^2}}}$的最小值为(  )
A.3B.$\frac{9}{2}$C.4D.$2\sqrt{3}$

分析 利用基本不等式转化已知条件,推出结果即可.

解答 解:正数x、y、z满足x2+y2+z2=1,
可得1=x2+y2+$\frac{1}{2}$z2+$\frac{1}{2}$z2≥$4\root{4}{{x}^{2}{y}^{2}•\frac{1}{2}{z}^{2}•\frac{1}{2}{z}^{2}}$=4$\sqrt{\frac{1}{2}xy{z}^{2}}$,
可得$\frac{1}{2}xy{z}^{2}$≤$\frac{1}{16}$,xyz2≤$\frac{1}{8}$
即S=$\frac{1}{{2xy{z^2}}}$≥4,当且仅当x=y=$\frac{\sqrt{2}}{2}z$=$\frac{1}{2}$时,S取得最小值4.
故选:C.

点评 本题考查基本不等式在最值中的应用,考查转化思想与计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=5,$\overrightarrow{c}$=λ$\overrightarrow{a}$+μ$\overrightarrow{b}$(λ,μ∈R),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,$\overrightarrow{c}$⊥($\overrightarrow{b}$-$\overrightarrow{a}$),则$\frac{λ}{μ}$=$\frac{25}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知方程(m2-2m-3)x+(2m2+m-1)y+6-2m=0(m∈R).
(1)当m为何实数时,方程表示的直线斜率不存在?求出这时的直线方程;
(2)已知方程表示的直线l在x轴上的截距为-3,求实数m的值;
(3)若方程表示的直线l的倾斜角是45°,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.已知圆C的极坐标方程为ρ=8cosθ+6sinθ,直线l的参数方程为$\left\{\begin{array}{l}{x=-t}\\{y=at+1}\end{array}\right.$(t为参数,a为实常数).
(1)若a=-1,求直线l与圆C的所有公共点;
(2)若直线l与圆C相交,截得弦长为2$\sqrt{7}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知某几何体的三视图如图所示,则该几何体的体积为$\frac{128}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,为测得河岸上塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10m到位置D,测得∠BDC=45°,则塔AB的高是10$\sqrt{6}$m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求f(x)的解析式;
(2)求f(x)在[0,$\frac{π}{2}$]上的最大、最小值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,$\overrightarrow a•(\overrightarrow a-2\overrightarrow b)=\frac{3}{2}$,则向量$\overrightarrow a$与$\overrightarrow b$夹角的余弦值为(  )
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$±\frac{1}{8}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}的前n项和Sn=n2-6n,第k项满足7<ak<10,则k=(  )
A.6B.7C.8D.9

查看答案和解析>>

同步练习册答案