精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,设动点PQ都在曲线Cθ为参数)上,且这两点对应的参数分别为θαθ=2α(0<α<2π),设PQ的中点M与定点A(1,0)间的距离为d,求d的取值范围.

解析试题分析: 根据题意由所给曲线参数方程,不难得出点P和点Q的坐标,结全中点坐标公式可得中点M的坐标,再利用两点间距离公式即可求出d的表达式,运用三角公式化简可得:,注意所给角的范围,得出d的取值范围.
试题解析:由题设可知( 1 + 2cosα,2sinα ),( 1 + 2cos2α,sin2α ),          2分
于是PQ的中点M.                     4分
从而              6分
因为0<α<2π,所以-1≤cosα<1,                                    8分
于是0≤d 2<4,故d的取值范围是.                             10分
考点:1.参数方程的应用;2.三角函数的性质

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知直线的参数方程为 (为参数),曲线的极坐标方程为 
(1)求曲线的普通方程;
(2)求直线被曲线截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线的参数方程是为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.
(1)写出的极坐标方程和的直角坐标方程;
(2)已知点的极坐标分别是,直线与曲线相交于两点,射线与曲线相交于点,射线与曲线相交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过圆O1、圆O2交点的直线的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,曲线C1的参数方程为:为参数),以原点为极点,x轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C2是极坐标方程为:
(1)求曲线C2的直角坐标方程;
(2)若P,Q分别是曲线C1和C2上的任意一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,直线的方程为,曲线的参数方程为
(1)已知在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为,判断点与直线的位置关系;
(2)设点是曲线上的一个动点,求它到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知☉O1和☉O2的极坐标方程分别是ρ=2cosθ和ρ=2asinθ(a是非零常数).
(1)将两圆的极坐标方程化为直角坐标方程.
(2)若两圆的圆心距为,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为,曲线C的极坐标方程为 
(Ⅰ)写出点P的直角坐标及曲线C的普通方程;
(Ⅱ)若为C上的动点,求中点到直线(t为参数)距离的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C的极坐标方程为ρ=6sinθ,以极点为原点、极轴为x轴非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C截得的线段的长度.

查看答案和解析>>

同步练习册答案