ÏÂÁÐÃüÌ⣺
¢Ùº¯Êýy=sinxºÍy=tanxÔÚµÚÒ»ÏóÏÞ¶¼ÊÇÔöº¯Êý£»
¢ÚÈôº¯Êýf£¨x£©ÔÚ[a£¬b]ÉÏÂú×ãf£¨a£©f£¨b£©£¼0£¬º¯Êýf£¨x£©ÔÚ£¨a£¬b£©ÉÏÖÁÉÙÓÐÒ»¸öÁãµã£»
¢ÛÊýÁÐ{an}ΪµÈ²îÊýÁУ¬ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬S10£¾0£¬S11£¼0£¬Sn×î´óֵΪS5£»
¢ÜÔÚ¡÷ABCÖУ¬A£¾BµÄ³äÒªÌõ¼þÊÇcos2A£¼cos2B£»
¢ÝÔÚÏßÐԻعé·ÖÎöÖУ¬ÏßÐÔÏà¹ØÏµÊýÔ½´ó£¬ËµÃ÷Á½¸öÁ¿ÏßÐÔÏà¹ØÐÔ¾ÍԽǿ£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
 
£¨°ÑËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ¶¼Ð´ÉÏ£©£®
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺¼òÒ×Âß¼­
·ÖÎö£º¢Ù²»ÕýÈ·£¬È¡x=
¦Ð
3
£¬
¦Ð
6
+2¦Ð
£¬¼´¿ÉÅжϳö£»
¢ÚÀûÓú¯ÊýÁãµãÅж¨¶¨Àí¼´¿ÉÅжϳö£»
¢ÛÓÉS10£¾0£¬S11£¼0£¬¿ÉµÃ
10(a1+a10)
2
=5£¨a6+a5£©£¾0£¬
11(a1+a11)
2
=11a6£¼0£¬¿ÉµÃa6£¼0£¬a5£¾0£®¼´¿ÉµÃ³öSn×î´óֵΪS5£»
¢ÜÔÚ¡÷ABCÖУ¬cos2A-cos2B=-2sin£¨A+B£©sin£¨A-B£©=2sin£¨A+B£©sin£¨B-A£©£¼0?A£¾B£»
¢ÝÀûÓÃÏßÐÔÏà¹ØÏµÊýÓëÏßÐÔÏà¹ØÐԵĹØÏµ¼´¿ÉÅжϳö£®
½â´ð£º ½â£º¢Ùº¯Êýy=sinxºÍy=tanxÔÚµÚÒ»ÏóÏÞ¶¼ÊÇÔöº¯Êý£¬²»ÕýÈ·£¬È¡x=
¦Ð
3
£¬
¦Ð
6
+2¦Ð
£¬µ«ÊÇsin
¦Ð
3
£¾sin(
¦Ð
6
+2¦Ð)
£¬tan
¦Ð
3
£¾tan(
¦Ð
6
+2¦Ð)
£¬Òò´Ë²»Êǵ¥µ÷µÝÔöº¯Êý£»
¢ÚÈôº¯Êýf£¨x£©ÔÚ[a£¬b]ÉÏÂú×ãf£¨a£©f£¨b£©£¼0£¬º¯Êýf£¨x£©ÔÚ£¨a£¬b£©ÉÏÖÁÉÙÓÐÒ»¸öÁãµã£¬ÕýÈ·£»
¢ÛÊýÁÐ{an}ΪµÈ²îÊýÁУ¬ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬S10£¾0£¬S11£¼0£¬¡à
10(a1+a10)
2
=5£¨a6+a5£©£¾0£¬
11(a1+a11)
2
=11a6£¼0£¬
¡àa5+a6£¾0£¬a6£¼0£¬¡àa5£¾0£®Òò´ËSn×î´óֵΪS5£¬ÕýÈ·£»
¢ÜÔÚ¡÷ABCÖУ¬cos2A-cos2B=-2sin£¨A+B£©sin£¨A-B£©=2sin£¨A+B£©sin£¨B-A£©£¼0?A£¾B£¬Òò´ËÕýÈ·£»
¢ÝÔÚÏßÐԻعé·ÖÎöÖУ¬ÏßÐÔÏà¹ØÏµÊýÔ½´ó£¬ËµÃ÷Á½¸öÁ¿ÏßÐÔÏà¹ØÐÔ¾ÍԽǿ£¬ÕýÈ·£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ ¢Ú¢Û¢Ü¢Ý£®
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËÈý½Çº¯ÊýµÄµ¥µ÷ÐÔ¡¢º¯ÊýÁãµã´æÔÚÅж¨¶¨Àí¡¢µÈ²îÊýÁеÄÐÔÖÊ¡¢Á½½ÇºÍ²î»¯»ý¹«Ê½¡¢ÏßÐԻعé·ÖÎö£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÃüÌ⣺
£¨1£©ÉèA£¬BΪÁ½¸ö¶¨µã£¬kΪ·ÇÁã³£Êý£¬|PA|-|PB|=k£¬Ôò¶¯µãPµÄ¹ì¼£ÎªË«ÇúÏßµÄÒ»Ìõ·ÖÖ§£»
£¨2£©ÈôµÈ±ÈÊýÁеÄǰnÏîºÍSn=2n+k£¬Ôò±ØÓÐk=-1£»
£¨3£©Èôx£¾0£¬Ôò2x+2-xµÄ×îСֵΪ2£»
£¨4£©Ë«ÇúÏß
x2
25
-
y2
9
=1ÓëÍÖÔ²
x2
35
+y2=1ÓÐÏàͬµÄ½¹µã£»
£¨5£©Æ½ÃæÄÚµ½¶¨µã£¨3£¬-1£©µÄ¾àÀëµÈÓÚµ½¶¨Ö±Ïßx+2y-1=0µÄ¾àÀëµÄµãµÄ¹ì¼£ÊÇÒ»ÌõÖ±Ïߣ®
ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A¡¢1 ¸öB¡¢2¸ö
C¡¢3¸öD¡¢4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼×¡¢ÒÒÁ½ÈËͬʱ²Î¼Ó»·±£ÖªÊ¶½ú¼¶Èü£¬¾ºÈü¹æÔòÊÇ£ºÈç¹ûµÚÒ»ÂÖ±ÈÈüÖÐÓÐÈ˽ú¼¶£¬Ôò±ÈÈü½áÊø£¬·ñÔò½øÐÐͬµÈÌõ¼þϵĵڶþÂÖ±ÈÈü£¬×î¶à±ÈÈüÁ½ÂÖ£®Ã¿ÂÖ±ÈÈü¼×½ú¼¶µÄ¸ÅÂÊΪ0.6£¬ÒÒ½ú¼¶µÄ¸ÅÂÊΪ0.5£¬¼×¡¢ÒÒÁ½ÈËÊÇ·ñ½ú¼¶»¥²»Ó°Ï죮Çó£º
£¨1£©±ÈÈüÖ»½øÐÐÒ»ÂֵĸÅÂÊP£¨A£©£»
£¨2£©Éè½ú¼¶µÄÈËÊýΪX£¬ÊÔÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªA£¨0£¬-5£©£¬B£¨0£¬5£©£¬|PA|-|PB|=2a£¬µ±a=3»ò5ʱ£¬PµãµÄ¹ì¼£Îª£¨¡¡¡¡£©
A¡¢Ë«ÇúÏߺÍÒ»ÌõÖ±Ïß
B¡¢Ë«ÇúÏߺÍÁ½ÌõÖ±Ïß
C¡¢Ë«ÇúÏßµÄÒ»Ö§ºÍÒ»ÌõÖ±Ïß
D¡¢Ë«ÇúÏßµÄÒ»Ö§ºÍÒ»ÌõÉäÏß

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijУ¿ªÉè8ÃÅУ±¾¿Î³Ì£¬ÆäÖÐ4ÃſγÌΪÈËÎÄ¿ÆÑ§£¬4ÃÅΪ×ÔÈ»¿ÆÑ§£¬Ñ§Ð£ÒªÇóѧÉú    ÔÚ¸ßÖÐÈýÄêÄÚ´ÓÖÐÑ¡ÐÞ3Ãſγ̣¬¼ÙÉèѧÉúÑ¡ÐÞÿÃſγ̵Ļú»á¾ùµÈ£®
£¨1£©ÇóijͬѧÖÁÉÙÑ¡ÐÞ1ÃÅ×ÔÈ»¿ÆÑ§¿Î³ÌµÄ¸ÅÂÊ£»
£¨2£©ÒÑ֪ijͬѧËùÑ¡ÐÞµÄ3ÃſγÌÖÐÓÐ1ÃÅÈËÎÄ¿ÆÑ§£¬2ÃÅ×ÔÈ»¿ÆÑ§£¬Èô¸Ãͬѧͨ¹ýÈËÎÄ¿ÆÑ§¿Î³ÌµÄ¸ÅÂʶ¼ÊÇ
4
5
£¬×ÔÈ»¿ÆÑ§¿Î³ÌµÄ¸ÅÂʶ¼ÊÇ
3
4
£¬ÇÒ¸÷ÃſγÌͨ¹ýÓë·ñÏ໥¶ÀÁ¢£®Óæαíʾ¸ÃͬѧËùÑ¡µÄ3ÃſγÌͨ¹ýµÄÃÅÊý£¬ÇóËæ»ú±äÁ¿¦ÎµÄ¸ÅÂÊ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚº¯Êýf£¨x£©£¬g£¨x£©ºÍÇø¼äD£¬Èç¹û´æÔÚx0¡ÊD£¬Ê¹µÃ|f£¨x0£©-g£¨x0£©|¡Ü1£¬Ôò³Æx0ÊǺ¯Êýf£¨x£©Óëg£¨x£©ÔÚÇø¼äDÉϵġ°Ç×Ãܵ㡱£®ÏÖ¸ø³öËĶԺ¯Êý£º
¢Ùf£¨x£©=x2£¬g£¨x£©=2x-2£» ¢Úf£¨x£©=
x
£¬g£¨x£©=x+2£»
¢Ûf£¨x£©=ex£¬g£¨x£©=x+1£»  ¢Üf£¨x£©=lnx£¬g£¨x£©=x
ÔòÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏ´æÔÚΨһ¡°Ç×Ãܵ㡱µÄÊÇ£¨¡¡¡¡£©
A¡¢¢Ù¢ÛB¡¢¢Û¢ÜC¡¢¢Ù¢ÜD¡¢¢Ú¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýg£¨x£©=£¨a+1£©x-2+1£¨a£¾0£©µÄͼÏóºã¹ý¶¨µãA£¬ÇÒµãAÓÖÔÚº¯Êýf£¨x£©=log 
3
£¨x+a£©µÄͼÏ󣮣¨1£©ÇóʵÊýaµÄÖµ£»   
£¨2£©½â²»µÈʽf£¨x£©£¼log 
3
a£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬ÈôC=30¡ã£¬AC=3
3
£¬AB=3£¬Ôò¡÷ABCµÄÃæ»ýΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªx£¬yÂú×ã
x-y+2¡Ý0
x+y-4¡Ý0
2x-y-5¡Ü0
£®
£¨1£©Çóz=x2+y2+2x-2y+2µÄ×îСֵ£»
£¨2£©Çóz=|x+2y-4|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸