【题目】已知A、B分别为椭圆E:
(a>1)的左、右顶点,G为E的上顶点,
,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;
(2)证明:直线CD过定点.
【答案】(1)
;(2)证明详见解析.
【解析】
(1)由已知可得:
,
,
,即可求得
,结合已知即可求得:
,问题得解.
(2)设
,可得直线
的方程为:
,联立直线
的方程与椭圆方程即可求得点
的坐标为
,同理可得点
的坐标为
,当
时,可表示出直线
的方程,整理直线
的方程可得:
即可知直线过定点
,当
时,直线
:
,直线过点
,命题得证.
(1)依据题意作出如下图象:
![]()
由椭圆方程
可得:
,
,![]()
![]()
,![]()
![]()
,![]()
![]()
椭圆方程为:![]()
(2)证明:设
,
则直线
的方程为:
,即:![]()
联立直线
的方程与椭圆方程可得:
,整理得:
,解得:
或![]()
将
代入直线
可得:![]()
所以点
的坐标为
.
同理可得:点
的坐标为![]()
当
时,
直线
的方程为:
,
整理可得:![]()
整理得:![]()
所以直线
过定点
.
当
时,直线
:
,直线过点
.
故直线CD过定点
.
科目:高中数学 来源: 题型:
【题目】已知
,直线
不过原点
且不平行于坐标轴,
与
有两个交点
,
,线段
的中点为
.
(1)若
,点
在椭圆
上,
、
分别为椭圆的两个焦点,求
的范围;
(2)若
过点
,射线
与椭圆
交于点
,四边形
能否为平行四边形?若能,求此时直线
斜率;若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在
中,
,
,
,
分别为
,
的中点
是由
绕直线
旋转得到,连结
,
,
.
![]()
(1)证明:
平面
;
(2)若
,棱
上是否存在一点
,使得
?若存在,确定点
的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设α,β是空间中的两个平面,l,m是两条直线,则使得α∥β成立的一个充分条件是( )
A.lα,mβ,l∥mB.l⊥m,l∥α,m⊥β
C.lα,mα,l∥β,m∥βD.l∥m,l⊥α,m⊥β
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在
中,
,
,
,
分别为
,
的中点
是由
绕直线
旋转得到,连结
,
,
.
![]()
(1)证明:
平面
;
(2)若
,棱
上是否存在一点
,使得
?若存在,确定点
的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )
![]()
A.3699块B.3474块C.3402块D.3339块
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的坐标方程为
,若直线
与曲线
相切.
(1)求曲线
的极坐标方程;
(2)在曲线
上取两点
、
于原点
构成
,且满足
,求面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正
边长为3,点M,N分别是AB,AC边上的点,
,如图1所示.将
沿MN折起到
的位置,使线段PC长为
连接PB,如图2所示.
![]()
(1)求证:平面
平面BCNM;
(2)若点D在线段BC上,且
,求平面PDM和平面PDC所成锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com