精英家教网 > 高中数学 > 题目详情

【题目】已知,直线不过原点且不平行于坐标轴,有两个交点,线段的中点为

1)若,点在椭圆上,分别为椭圆的两个焦点,求的范围;

2)若过点,射线与椭圆交于点,四边形能否为平行四边形?若能,求此时直线斜率;若不能,说明理由.

【答案】1;(2.

【解析】

1)求得焦点坐标,设,运用向量数量积的坐标表示,结合椭圆的范围,可得所求范围;

2)设的坐标分别为,运用中点坐标公式和点差法,直线的斜率公式,结合平行四边形的性质,即可得到所求斜率.

解:(1时,椭圆,两个焦点

,可得,即

因为

所以的范围是

2)设的坐标分别为,可得

,两式相减可得

,即

,又设,直线

即直线的方程为

从而,代入椭圆方程可得,

,联立得

若四边形为平行四边形,那么也是的中点,

所以,即,整理可得

解得,经检验满足题意,

所以当时,四边形为平行四边形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】法国数学家庞加是个喜欢吃面包的人,他每天都会购买一个面包,面包师声称自己出售的每个面包的平均质量是1000,上下浮动不超过50.这句话用数学语言来表达就是:每个面包的质量服从期望为1000,标准差为50的正态分布.

1)假设面包师的说法是真实的,从面包师出售的面包中任取两个,记取出的两个面包中质量大于1000的个数为,求的分布列和数学期望;

2)作为一个善于思考的数学家,庞加莱每天都会将买来的面包称重并记录,25天后,得到数据如下表,经计算25个面包总质量为24468.庞加莱购买的25个面包质量的统计数据(单位:

981

972

966

992

1010

1008

954

952

969

978

989

1001

1006

957

952

969

981

984

952

959

987

1006

1000

977

966

尽管上述数据都落在上,但庞加菜还是认为面包师撒谎,根据所附信息,从概率角度说明理由

附:

,从X的取值中随机抽取25个数据,记这25个数据的平均值为Y,则由统计学知识可知:随机变量

,则

通常把发生概率在0.05以下的事件称为小概率事件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年上半年,随着新冠肺炎疫情在全球蔓延,全球超过个国家或地区宣布进人紧急状态,部分国家或地区直接宣布封国封城,随着国外部分活动进入停摆,全球经济缺乏活力,一些企业开始倒闭,下表为年第一季度企业成立年限与倒闭分布情况统计表:

企业成立年份

2019

2018

2017

2016

2015

企业成立年限

1

2

3

4

5

倒闭企业数量(万家)

5.23

4.70

3.72

3.12

2.42

倒闭企业所占比例

21.8%

19.6%

15.5%

13.0%

10.1%

根据上表,给出两种回归模型:

模型①:建立曲线型回归模型,求得回归方程为

模型②:建立线性回归模型.

1)根据所给的统计量,求模型②中关于的回归方程;

2)根据下列表格中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测年成立的企业中倒闭企业所占比例(结果保留整数).

回归模型

模型①

模型②

回归方程

参考公式:.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别是,直线与椭圆交于两点.

1)若为椭圆短轴上的一个顶点,且是直角三角形,求的值;

2)若,且,求证:的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和的直角坐标方程;

2)已知曲线的极坐标方程为,点是曲线的交点,点是曲线的交点,均异于原点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】BMI指数(身体质量指数,英文为BodyMassIndex,简称BMI)是衡量人体胖瘦程度的一个标准,BMI=体重(kg/身高(m)的平方.根据中国肥胖问题工作组标准,当BMI28时为肥胖.某地区随机调查了120035岁以上成人的身体健康状况,其中有200名高血压患者,被调查者的频率分布直方图如下:

1)求被调查者中肥胖人群的BMI平均值

2)填写下面列联表,并判断是否有99.9%的把握认为35岁以上成人患高血压与肥胖有关.

0.050

0.010

0.001

k

3.841

6.635

10.828

肥胖

不肥胖

合计

高血压

非高血压

合计

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,斜率为的直线交抛物线两点,当直线过点时,以为直径的圆与直线相切.

(1)求抛物线的方程;

(2)与平行的直线交抛物线于两点,若平行线之间的距离为,且的面积是面积的O为坐标原点),求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB分别为椭圆Ea>1)的左、右顶点,GE的上顶点,P为直线x=6上的动点,PAE的另一交点为CPBE的另一交点为D

1)求E的方程;

2)证明:直线CD过定点.

查看答案和解析>>

同步练习册答案