ÒÑÖª¹«±ÈΪq£¨q¡Ù1£©µÄÎÞÇîµÈ±ÈÊýÁÐ{an}µÄÊ×Ïîa1=1£®
£¨1£©Èôq=
1
3
£¬ÔÚa1Óëa2Ö®¼ä²åÈëk¸öÊýb1£¬b2£¬¡­£¬bk£¬Ê¹µÃa1£¬b1£¬b2£¬¡­£¬bk£¬a2£¬a3³ÉµÈ²îÊýÁУ¬ÇóÕâk¸öÊý£»
£¨2£©¶ÔÓÚÈÎÒâ¸ø¶¨µÄÕýÕûÊým£¬ÔÚa1£¬a2£¬a3µÄa1Óëa2ºÍa2Óëa3Ö®¼ä¹²²åÈëm¸öÊý£¬¹¹³ÉÒ»¸öµÈ²îÊýÁУ¬Ç󹫱ÈqµÄËùÓпÉÄÜȡֵµÄ¼¯ºÏ£¨ÓÃm±íʾ£©£»
£¨3£©µ±ÇÒ½öµ±qÈ¡ºÎֵʱ£¬ÔÚÊýÁÐ{an}µÄÿÏàÁÚÁ½Ïîak£¬ak+1Ö®¼ä²åÈëck£¨k¡ÊN*£¬ck¡ÊN£©¸öÊý£¬Ê¹Ö®³ÉΪһ¸öµÈ²îÊýÁУ¿²¢Çóc1µÄËùÓпÉÄÜÖµµÄ¼¯ºÏ¼°{cn}µÄͨÏʽ£¨ÓÃq±íʾ£©£®
¿¼µã£ºÊýÁеÄÓ¦ÓÃ
רÌ⣺ѹÖáÌâ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÓÉÌõ¼þµÃ1£¬b1£¬b2£¬¡­bk£¬
1
3
£¬
1
9
³ÉµÈ²îÊýÁУ¬Çó³ö¹«²îd=-
2
9
£¬k=2£¬¼´¿ÉÇóÕâ2¸öÊý£»
£¨2£©Éèa1Óëa2Ö®¼ä²åÈëk¸öÊý£¬k¡ÊN£¬ÇÒk¡Üm£¬ÔòÔÚa2Óëa3Ö®¼ä²åÈ루m-k£©¸öÊý£¬ÓÉÌõ¼þÕâµÈ²îÊýÁеÚÒ»ÏîΪa1=1£¬µÚk+2ÏîΪa2=q£¬µÚm+3ÏîΪa2=q2£¬Áгö·½³Ì£¬¼´¿ÉÇ󹫱ÈqµÄËùÓпÉÄÜȡֵµÄ¼¯ºÏ£»
£¨3£©µ±ÇÒ½öµ±q¡ÊN£¬ÇÒq¡Ý2ʱ£¬ÔÚÊýÁÐ{an}µÄÿÏàÁÚÁ½Ïîak£¬ak+1Ö®¼ä²åÈëck£¨k¡ÊN*£¬ck¡ÊN£©¸öÊý£¬Ê¹Ö®³ÉΪһ¸öµÈ²îÊýÁУ¬ÔÙ½øÐÐÖ¤Ã÷¼´¿É£®
½â´ð£º ½â£º£¨1£©ÓÉÌõ¼þµÃ1£¬b1£¬b2£¬¡­bk£¬
1
3
£¬
1
9
³ÉµÈ²îÊýÁУ¬
ËùÒÔ¹«²îd=-
2
9
£¬k=2£¬
ËùÒÔÕâ2¸öÊýΪ£ºb1=
7
9
£¬b2=
5
9
£»                                            ¡­£¨2·Ö£©
£¨2£©Éèa1Óëa2Ö®¼ä²åÈëk¸öÊý£¬k¡ÊN£¬ÇÒk¡Üm£¬ÔòÔÚa2Óëa3Ö®¼ä²åÈ루m-k£©¸öÊý£¬
ÓÉÌõ¼þÕâµÈ²îÊýÁеÚÒ»ÏîΪa1=1£¬µÚk+2ÏîΪa2=q£¬µÚm+3ÏîΪa2=q2£¬
ËùÒÔ
q-1
k+1
=
q2-q
m-k+1
£¬q¡Ù1£¬
ËùÒÔq=
m-k+1
k+1
£¬ÇÒ k¡Ù
m
2
£»
ËùÒÔ¹«±ÈqµÄËùÓпÉÄܵÄȡֵµÄ¼¯ºÏ{ q|q=
m-k+1
k+1
£¬k¡ÊN£¬k¡ÜmÇÒk¡Ù
m
2
}£»¡­£¨6·Ö£©
£¨3£©µ±ÇÒ½öµ±q¡ÊN£¬ÇÒq¡Ý2ʱ£¬ÔÚÊýÁÐ{an}µÄÿÏàÁÚÁ½Ïîak£¬ak+1Ö®¼ä²åÈëck£¨k¡ÊN*£¬ck¡ÊN£©¸öÊý£¬Ê¹Ö®³ÉΪһ¸öµÈ²îÊýÁУ»
Ö¤Ã÷ÈçÏ£º
£¨i£©µ±q¡ÊN£¬ÇÒq¡Ý2ʱ£¬Ð¹¹³ÉµÄµÈ²îÊýÁпÉÒÔÊÇÕýÕûÊýÊýÁÐ1£¬2£¬3£¬¡­£¬ÏÔÈ»Âú×ãÌõ¼þ£»      ¡­£¨8·Ö£©
£¨ii£© ÈôÔÚÊýÁÐ{an}µÄÿÏàÁÚÁ½Ïîak£¬ak+1Ö®¼ä²åÈëck£¨k¡ÊN*£¬ck¡ÊN£©¸öÊý£¬Ê¹Ö®³ÉΪһ¸öµÈ²îÊýÁУ¬Õâ¸öµÈ²îÊýÁÐÉèΪ{bn}£¬Ôò¶ÔÓÚÈÎÒâµÄk¡ÊN*£¬¶¼ÓÐ
ak+1-ak
ck+1
=
ak+2-ak+1
ck+1+1
£¬
¼´
qk-qk-1
ck+1
=
qk+1-qk
ck+1+1
£¬q¡Ù1ÇÒq¡Ù0£¬
ËùÒÔq=
ck+1+1
ck+1
£¬ck+1£¬ck¡ÊN£¬
ËùÒÔqΪÕýÓÐÀíÊý£¬{an}ΪÕýÏîÎÞÇîµÈ±ÈÊýÁУ¬
Èôq²»ÎªÕûÊý£¬²»·ÁÉèq=
t
p
£¬ÆäÖÐp£¬t¡ÊN*£¬pÓët»¥ÖÊ£¬ÇÒp¡Ý2£¬
µÈ²îÊýÁÐ{bn}µÄ¹«²îΪd=
p
c1+1
=
t-p
(c1+1)p
£¬Í¨ÏîΪbn=1+£¨n-1£©
t-p
(c1+1)p
£»
ÔòÊýÁÐ{£¨c1+1£©pbn}µÄ¸÷ÏΪÕûÊý£¬
Ôò¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬£¨c1+1£©p an¡ÊN*£¬
¼´¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬£¨c1+1£©p£¨
t
p
£©n-1¡ÊN*£¬
¼´ÓÚÈÎÒâµÄn¡ÊN*£¬ÓÉpÓët»¥ÖÊ£¬Ôò£¨c1+1£©p¶¼Äܱ»pn-1Õû³ý£¬p¡Ý2£¬ÇÒp¡ÊN*£¬
ÕâÊDz»¿ÉÄܵģ¬
ËùÒÔqΪÕýÕûÊý£¬ÓÖq¡Ù1£¬
ËùÒÔq¡ÊN£¬ÇÒq¡Ý2£»                                                          ¡­£¨12·Ö£©
µ±q¡ÊN£¬ÇÒq¡Ý2ʱ£¬
¶ÔÓÚÊ×ÏîΪ1£¬µÚ£¨c1+1£©ÏîΪqµÄµÈ²îÊýÁÐ{bn}£¬Ôò¹«²îd=
q-1
c1+1
£¬
Áîan=bm£¬¼´q n-1=1+£¨m-1£©
q-1
c1+1
£¨n¡ÊN*£©£¬
ÓÐm=£¨c1+1£©
qn-1-1
q-1
+1¡ÊN*£¬
ËùÒÔanÊÇ{bn}ÖеĵÚ[£¨c1+1£©
qn-1-1
q-1
+1]Ï
ËùÒÔc1µÄËùÓпÉÄÜÖµµÄ¼¯ºÏÊÇ×ÔÈ»Êý¼¯N£»                     ¡­£¨14·Ö£©
¶ÔÓÚÈÎÒâµÄ×ÔÈ»Êýc1£¬
ÓÉ
cn+1+1
cn+1
=q£¬q¡ÊN£¬n¡ÊN*ÇÒq¡Ý2Öª{cn+1}ÊÇÊ×ÏîΪc1+1£¬¹«±ÈΪqµÄµÈ±ÈÊýÁУ¬
ËùÒÔ{cn}µÄͨÏʽΪcn=£¨c1+1£©qn-1-1£®                         ¡­£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éµÄÊÇÊýÁеÄÓ¦Ó㬿¼²éµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ۺϣ¬¿¼²é·´Ö¤·¨Ë¼ÏëµÄÔËÓã¬ÄѶȴó£¬Ñ§ÉúºÜÄѽâ¾ö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÈ«¼¯U={x¡ÊZ|
6
x+1
¡Ý1}£¬M¡ÉN={1£¬2}£¬∁U£¨M¡ÈN£©={0}£¬£¨∁UM£©¡ÉN={4£¬5}£¬ÔòM=£¨¡¡¡¡£©
A¡¢{1£¬2£¬3}
B¡¢{-1£¬1£¬2£¬3}
C¡¢{1£¬2}
D¡¢{-1£¬1£¬2}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª
x
1+yi
=1-i£¬ÆäÖÐx£¬y¡ÊR£¬iΪÐéÊýµ¥Î»£¬Ôòx+yi=£¨¡¡¡¡£©
A¡¢1+2iB¡¢1-2i
C¡¢2+iD¡¢2-i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚ¡÷ABCÖУ¬ÒÑÖªDΪBC±ßÉϵÄÖе㣬ÇÒcosB=
5
13
£¬cos¡ÏADC=-
3
5
£®
£¨1£©Çósin¡ÏBADµÄÖµ£»
£¨2£©ÈôAD=5£¬Çó±ßACµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=|x-a|+3x£¬ÆäÖÐa¡Ù0£®
£¨¢ñ£©µ±a=2ʱ£¬Çó²»µÈʽf£¨x£©¡Ý3x+2µÄ½â¼¯£»
£¨¢ò£©Èô²»µÈʽf£¨x£©¡Ü0µÄ½â¼¯°üº¬{x|x¡Ü-1}£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÊýÁÐ{an}ÖУ¬a1=1£¬a1+
a2
2
+
a3
3
+¡­+
an
n
=2n-1£¨n¡ÊN*£©
£¨¢ñ£©ÇóÊýÁÐ{an}µÄǰnÏîºÍSn£»
£¨¢ò£©Èô´æÔÚn¡ÊN*£¬Ê¹µÃan¡Ün£¨n+1£©¦Ë³ÉÁ¢£¬ÇóʵÊý¦ËµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
a
=£¨2cosx£¬-
2
£©£¬
b
=£¨3sinx-cosx£¬sin£¨2x+
¦Ð
4
£©£©£¬Éèf£¨x£©=
a
b
+1
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Çóf£¨x£©ÔÚÇø¼ä[
5¦Ð
24
£¬
3¦Ð
4
]ÉϵÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x2-
2
3
ax3£¨a£¾0£©£¬x¡ÊR£®
£¨¢ñ£©Çóf£¨x£©µÄµ¥µ÷Çø¼äºÍ¼«Öµ£»
£¨¢ò£©Èô¶ÔÓÚÈÎÒâµÄx1¡Ê£¨2£¬+¡Þ£©£¬¶¼´æÔÚx2¡Ê£¨1£¬+¡Þ£©£¬Ê¹µÃf£¨x1£©•f£¨x2£©=1£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=£¨x-1£©2+alnx£¬a¡ÊR£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©ÇóÖ¤£º¡°0£¼a£¼
4
9
¡±ÊǺ¯Êýf£¨x£©ÓÐÈý¸öÁãµãµÄ±ØÒªÌõ¼þ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸