精英家教网 > 高中数学 > 题目详情
(2012•重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球三次时投篮结束.设甲每次投篮投中的概率为
1
3
,乙每次投篮投中的概率为
1
2
,且各次投篮互不影响.
(Ⅰ)求乙获胜的概率;
(Ⅱ)求投篮结束时乙只投了2个球的概率.
分析:(Ⅰ)分别求出乙第一次投球获胜的概率、乙第二次投球获胜的概率、乙第三次投球获胜的概率,相加即得所求.
(Ⅱ)由于投篮结束时乙只投了2个球,说明第一次投球甲乙都没有投中,第二次投球甲没有投中、乙投中,或第三次投球甲投中了,把这两种情况的概率相加,即得所求.
解答:解:(Ⅰ)∵乙第一次投球获胜的概率等于
2
3
×
1
2
=
1
3
,乙第二次投球获胜的概率等于(
2
3
)
2
1
2
1
2
=
1
9
,乙第三次投球获胜的概率等于(
2
3
)
3
 (
1
2
)
2
1
2
=
1
27

故 乙获胜的概率等于
1
3
+
1
9
+
1
27
=
13
27

(Ⅱ)由于投篮结束时乙只投了2个球,说明第一次投球甲乙都没有投中,第二次投球甲没有投中、乙投中,或第三次投球甲投中了.
故投篮结束时乙只投了2个球的概率等于  (
2
3
)
2
×
1
2
×
1
2
+
1
2
×
1
2
×(
2
3
)
2
×
1
3
=
4
27
点评:本题主要考查相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为
1
3
,乙每次投篮投中的概率为
1
2
,且各次投篮互不影响.
(Ⅰ) 求甲获胜的概率;
(Ⅱ) 求投篮结束时甲的投篮次数ξ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012重庆理)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)

甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.

(Ⅰ) 求甲获胜的概率;

(Ⅱ) 求投篮结束时甲的投篮次数的分布列与期望

查看答案和解析>>

同步练习册答案