精英家教网 > 高中数学 > 题目详情
(本小题12分)已知,且点A和点B都在椭圆内部,
(1)请列出有序数组的所有可能结果;
(2)记“使得成立的”为事件A,求事件A发生的概率。
(1)(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)共12个基本事件。
(2)事件A发生的概率为

试题分析:(1)先利用椭圆的几何性质得到参数n,m的满足的自然数的值,然后利用点的坐标的表示,确定出所有的有序数组。
(2)将向量的垂直问题,运用参数m表示得到,即为,进而从所有结果中找到事件发生的基本事件数即可。
解:∵点A在椭圆内且
又点B在椭圆内且
∴有序数组的所有可能结果为:
(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)共12个基本事件。

故事件A包含的基本事件为(0,1)、(1,0)、(2,1)共3个。∴P(A)=
答:事件A发生的概率为
点评:解决该试题的关键是弄清楚点在椭圆内时,参数m,n的满足的值,然后列举法得到试验的全部结果,结合古典概型求解得到。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,椭圆的离心率为,直线所围成的矩形ABCD的面积为8.
 
(Ⅰ)求椭圆M的标准方程;
(Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C的中心在原点O,焦点在轴上,长轴长是短轴
长的2倍,且经过点M. 平行于OM的直线轴上的截距为并交椭
圆C于A、B两个不同点.
(1)求椭圆C的标准方程;
(2)求m的取值范围; 
(3)求证:直线MA、MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=8,则点M的轨迹是( )
A.线段B.直线C.椭圆D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆的左、右焦点,弦,则的周长为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆上一点到焦点的距离为2,的中点,则等于(  )
A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分) 如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且MD=PD.

(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 已知椭圆E:=1(a>b>o)的离心率e=,且经过点(,1),O为坐标原点。

(Ⅰ)求椭圆E的标准方程;
 (Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的长轴长是短轴长的两倍,且过点
(1)求椭圆的标准方程;
(2)若直线与椭圆交于不同的两点,求的值.

查看答案和解析>>

同步练习册答案