精英家教网 > 高中数学 > 题目详情
9.若对于任意实数x,|x+a|-|x+1|≤2a恒成立,则实数a的最小值为$\frac{1}{3}$.

分析 利用绝对值的几何意义求解.

解答 解:由题意:|x+a|-|x+1|表示数轴上的x对应点到-a对应点的距离减去它到-1对应点的距离,
故它的最大值为|a-1|.
由于对于任意实数x,有|x+a|-|x+1|<2a恒成立,可得|a-1|<2a,
解得:a$≥\frac{1}{3}$.
∴实数a的最小值为:$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查了绝对值的几何意义.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知点P(x,y)是圆x2+y2=2y上的动点,
(1)求z=2x+y的取值范围; 
(2)若x+y+a≥0恒成立,求实数a的取值范围.
(3)求x2+y2-16x+4y的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=$\left\{\begin{array}{l}{(2a-1)x+3a,x<1}\\{{a}^{x},x≥1}\end{array}\right.$满足对任意x1≠x2都有(x1-x2)•(f(x1)-f(x2))<0成立,那么a的取值范围是(  )
A.(0,1)B.(0,$\frac{1}{2}$)C.[$\frac{1}{4}$,1)D.[$\frac{1}{4}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆N经过点A(3,1),B(-1,3),且它的圆心在直线3x-y-2=0上.
(Ⅰ)求圆N的方程;
(Ⅱ)求圆N关于直线x-y+3=0对称的圆的方程.
(Ⅲ)若点D为圆N上任意一点,且点C(3,0),求线段CD的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给定下列函数:
①f(x)=$\frac{1}{x}$②f(x)=-|x|③f(x)=-2x-1④f(x)=(x-1)2,满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有 f(x1)>f(x2)”的条件是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an},{bn}满足a1=1,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{1}{3{a}_{n}+2}$,anbn=1,则使bn>101的最小的n为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知单调递增数列{an}满足an=3n-λ•2n(其中λ为常数,n∈N+),则实数λ的取值范围是(  )
A.λ≤3B.λ<3C.λ≥3D.λ>3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)的反函数是y=$\frac{1}{{3}^{x}}$,则函数f(2x-x2)的减区间为(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=${cos^2}(x+\frac{π}{12})+\frac{1}{2}$sin2x.
(1)求函数f(x)的单调增区间;
(2)求函数f(x)的图象在y轴右边的第一个对称中心的坐标.

查看答案和解析>>

同步练习册答案