| A. | λ≤3 | B. | λ<3 | C. | λ≥3 | D. | λ>3 |
分析 单调递增数列{an}满足an=3n-λ•2n(其中λ为常数,n∈N+),可得:an<an+1,化为:λ<2×$(\frac{3}{2})^{n}$,利用数列的单调性即可得出.
解答 解:∵单调递增数列{an}满足an=3n-λ•2n(其中λ为常数,n∈N+),
∴an<an+1,
∴3n-λ•2n<3n+1-λ•2n+1,
化为:λ<2×($\frac{3}{2}$)n,
由于数列{2×($\frac{3}{2}$)n}单调递增,
∴2×($\frac{3}{2}$)n≥$2×\frac{3}{2}$=3.
∴λ<3.
故选:B.
点评 本题考查了递推关系的应用、数列的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | g(x)=log3(-x+2) | B. | g(x)=-log3(x-2) | C. | g(x)=log3(-x-2) | D. | g(x)=-log3(x+2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com