| A. | 0 | B. | 1 | C. | -1 | D. | -2 |
分析 由x=0是f(x)=0的一个极值点,可得f′(0)=0,求得b的值,确定出f(x)的解析式,由于阴影部分面积为$\frac{1}{12}$,利用定积分求面积的方法列出关于a的方程求出a并判断a的取舍即可
解答 解:由f(x)=-x3+ax2+bx,得f′(x)=-3x2+2ax+b.
∵x=0是原函数的一个极值点,
∴f′(0)=b=0.
∴f(x)=-x2(x-a),有∫a0(x3-ax2)dx=($\frac{1}{4}{x}^{4}-\frac{1}{3}a{x}^{3}$)|a0=0-$\frac{{a}^{4}}{4}$+$\frac{{a}^{4}}{3}$=$\frac{{a}^{4}}{12}$=$\frac{1}{12}$,
∴a=±1.
函数f(x)与x轴的交点横坐标一个为0,另一个a,根据图形可知a<0,得a=-1.
故选:C
点评 本题主要考查了定积分在求面积中的应用,以及定积分的运算法则,同时考查了计算能力和识图能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | λ≤3 | B. | λ<3 | C. | λ≥3 | D. | λ>3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{\sqrt{6}}{6}$ | D. | $\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com