精英家教网 > 高中数学 > 题目详情
16.设a,b∈R+,且a+b=2则ab2的最大值为$\frac{4\sqrt{6}}{9}$.

分析 化简得a=2-b,0<b<2;从而可得f(b)=ab2=(2-b)b2=-b3+2b,f′(b)=-3b2+2=-3(b+$\frac{\sqrt{6}}{3}$)(b-$\frac{\sqrt{6}}{3}$),从而求得.

解答 解:∵a,b∈R+且a+b=2,
∴a=2-b,0<b<2;
f(b)=ab2=(2-b)b2=-b3+2b,
f′(b)=-3b2+2=-3(b+$\frac{\sqrt{6}}{3}$)(b-$\frac{\sqrt{6}}{3}$),
故f(b)在(0,$\frac{\sqrt{6}}{3}$)上是增函数,
在($\frac{\sqrt{6}}{3}$,2)上是减函数;
故ab2的最大值是f($\frac{\sqrt{6}}{3}$)=$\frac{4\sqrt{6}}{9}$
故答案为:$\frac{4\sqrt{6}}{9}$.

点评 本题考查了导数的综合应用及单调性的判断与应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,且f(x)是增函数.
(1)解不等式f(x+$\frac{1}{2}$)+f(x-1)<0
(2)若f(x)≤t2-2at+1对所有x∈[-1,1]、a∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数.
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围;
(2)解关于x的方程f(x)=|f′(x)|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给定下列函数:
①f(x)=$\frac{1}{x}$②f(x)=-|x|③f(x)=-2x-1④f(x)=(x-1)2,满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有 f(x1)>f(x2)”的条件是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某工厂要制造A种电子装置42台,B种电子装置55台,为了给每台装置配上一个外壳,需要从甲乙两种不同的钢板上截取.已知甲种钢板每张面积为2m2,可作A外壳3个B外壳5个;乙种钢板每张面积为3m,可作A外壳和B外壳各6个.用这两种钢板各多少张,才能使总的用料面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知单调递增数列{an}满足an=3n-λ•2n(其中λ为常数,n∈N+),则实数λ的取值范围是(  )
A.λ≤3B.λ<3C.λ≥3D.λ>3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知x,y满足$\left\{\begin{array}{l}{x-y≤0}\\{x+y-2≤0}\\{x≥a}\end{array}\right.$,且z=2x-y的最大值与最小值的比值为-2,则a的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}的前n项和为Sn,S8≤6,S11≥27,则S19的最小值是(  )
A.95B.114C.133D.152

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.安排6名志愿者去做3项不同的工作,每项工作需要2人,由于工作需要,A,B二人必须做同一项工作,C,D二人不能做同-项工作,那么不同的安棑方案有多少种.

查看答案和解析>>

同步练习册答案