分析 化简得a=2-b,0<b<2;从而可得f(b)=ab2=(2-b)b2=-b3+2b,f′(b)=-3b2+2=-3(b+$\frac{\sqrt{6}}{3}$)(b-$\frac{\sqrt{6}}{3}$),从而求得.
解答 解:∵a,b∈R+且a+b=2,
∴a=2-b,0<b<2;
f(b)=ab2=(2-b)b2=-b3+2b,
f′(b)=-3b2+2=-3(b+$\frac{\sqrt{6}}{3}$)(b-$\frac{\sqrt{6}}{3}$),
故f(b)在(0,$\frac{\sqrt{6}}{3}$)上是增函数,
在($\frac{\sqrt{6}}{3}$,2)上是减函数;
故ab2的最大值是f($\frac{\sqrt{6}}{3}$)=$\frac{4\sqrt{6}}{9}$
故答案为:$\frac{4\sqrt{6}}{9}$.
点评 本题考查了导数的综合应用及单调性的判断与应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | λ≤3 | B. | λ<3 | C. | λ≥3 | D. | λ>3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com