精英家教网 > 高中数学 > 题目详情
6.已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,且f(x)是增函数.
(1)解不等式f(x+$\frac{1}{2}$)+f(x-1)<0
(2)若f(x)≤t2-2at+1对所有x∈[-1,1]、a∈[-1,1]恒成立,求实数t的取值范围.

分析 (1)由$\left\{\begin{array}{l}{-1≤x+\frac{1}{2}≤1}\\{-1≤x-1≤1}\\{x+\frac{1}{2}<1-x}\end{array}\right.$即可求得不等式f(x+$\frac{1}{2}$)+f(x-1)<0的解集;
(3)先求得f(x)max=f(1)=1,将问题转化为:t2-2at+1≥1对a∈[-1,1]恒成立,构造函数f(a)=-2ta+t2,则f(a)≥0对a∈[-1,1]恒成立,解关于t的不等式组即可.

解答 解:(1)∵f(x)在区间[-1,1]上是增函数且f(x+$\frac{1}{2}$)<f(1-x),
∴$\left\{\begin{array}{l}{-1≤x+\frac{1}{2}≤1}\\{-1≤x-1≤1}\\{x+\frac{1}{2}<1-x}\end{array}\right.$,
∴0≤x<$\frac{1}{4}$,
∴解集为:{x|0≤x<$\frac{1}{4}$};
(2)f(x)max=f(1)=1.
f(x)≤t2-2at+1对所有x∈[-1,1]恒成立,则t2-2at+1≥1对a∈[-1,1]恒成立,
构造函数f(a)=-2ta+t2,则f(a)≥0对a∈[-1,1]恒成立,
∴$\left\{\begin{array}{l}{-2t>0}\\{2t+{t}^{2}≥0}\end{array}\right.$或$\left\{\begin{array}{l}{-2t<0}\\{-2t+{t}^{2}≥0}\end{array}\right.$或t=0,
解得:t≤-2或t=0或t≥2.

点评 本题考查函数恒成立问题,难点在于(2)f(x)≤t2-2at+1对所有x∈[-1,1]恒成立,转化为t2-2at+1≥f(x)max=1对a∈[-1,1]恒成立,突出考查化归思想与综合分析与应用的能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=3ax2-2(a+c)x+c(a>0,a,c∈R)
(1)若a=1,函数f(x)在区间(0,1)和(1,+∞)上各有一个零点,求实数c的取值范围;
(2)设a>0,若f(x)>-2cx+a对任意x∈[1,+∞)恒成立,求实数c的取值范围;
(3)函数f(x)在区间(0,1)内是否有零点,如果有,请确定零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知3x=2y=12,则$\frac{1}{x}$+$\frac{2}{y}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=-cos2x-4t•sin$\frac{x}{2}$cos$\frac{x}{2}$+2t2-6t+2(x∈R),其中t∈R,将f(x)的最小值记为g(t)
 (1)求g(t)的表达式;
(2)当-1<t<1时,要使关于t的方程g(t)=kt有且仅有一个实根,求实数k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,既是单调函数又是奇函数的是(  )
A.y=-xB.y=3|x|C.y=x0(x≠0)D.y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x-1)=x2-2x,则f(x)=x2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线mx2+5y2=5m的离心率e=2,则m=-15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设抛物线y2=2px(p>0)的焦点为F,准线为l,过抛物线上一点A作l的垂线,垂足为B.设C($\frac{7}{2}$p,0),AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为2$\sqrt{2}$,则p的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设a,b∈R+,且a+b=2则ab2的最大值为$\frac{4\sqrt{6}}{9}$.

查看答案和解析>>

同步练习册答案