精英家教网 > 高中数学 > 题目详情
18.已知双曲线mx2+5y2=5m的离心率e=2,则m=-15.

分析 由双曲线mx2+5y2=5m,化为标准方程,利用离心率e=2,即可求出m的值,

解答 解:双曲线mx2+5y2=5m即:$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{-m}=1$,
∴e2=1$-\frac{m}{5}$=4,∴m=-15.
故答案为:-15.

点评 本题考查双曲线的性质和标准方程,将方程化为标准方程是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆的两个焦点F1、F2都在y轴上,且a=5,c=3.
(1)求椭圆的标准方程;
(2)如图,过椭圆的焦点F1的直线与椭圆交于A、B两点,求△ABF2的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设全集为实数集R,A={x|3≤x<7},B={x|2<x<10},C={x|x<a}.
(1)求A∪B及(CRA)∩B;
(2)如果A∩C≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,且f(x)是增函数.
(1)解不等式f(x+$\frac{1}{2}$)+f(x-1)<0
(2)若f(x)≤t2-2at+1对所有x∈[-1,1]、a∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.圆x2+y2-2x-4y-20=0过点(1,-1)的最大弦长为m,最小弦长为n,则m+n=(  )
A.17B.18C.19D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某班高三期中考试后,对考生的数学成绩进行统计(考生成绩均不低于90分,满分150分),将成绩按如下方式分成六组,第一组[90,100)、第二组[100,110)…第六组[140,150].得到频率分布直方图如图所示,若第四、五、六组的人数依次成等差数列,且第六组有2人
(Ⅰ)请补充完整频率分布直方图;
(Ⅱ)现从成绩在[130,150]的学生中任选两人参加校数学竞赛,求恰有一人成绩在[130,140]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与直线x+2y+1=0垂直,F1,F2分别为C的左右焦点,A为双曲线上一点,若|F1A|=3|F2A|,则cos∠AF2F1=(  )
A.$\frac{3\sqrt{5}}{5}$B.$\frac{3\sqrt{5}}{4}$C.$\frac{\sqrt{5}}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数.
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围;
(2)解关于x的方程f(x)=|f′(x)|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知x,y满足$\left\{\begin{array}{l}{x-y≤0}\\{x+y-2≤0}\\{x≥a}\end{array}\right.$,且z=2x-y的最大值与最小值的比值为-2,则a的值是$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案