精英家教网 > 高中数学 > 题目详情

设F1、F2分别为椭圆=1的左、右焦点,c=,若直线x=上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是(  )

A.       B.        

C.       D.

 

【答案】

D

【解析】解:由已知P(),所以F1P的中点Q的坐标为(

由kF1P=

,kQF2=

,kF1P•kQF2=-1,⇒y2=2b2-

∴y2=(a2-c2)(3-)>0⇒(3-)>0,1>e>

当kF1P=0时,kQF2不存在,此时F2为中点,

综上得

≤e<1.故选D.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2分别为椭C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右两个焦点,椭圆C上的点A(1,
3
2
)
到两点的距离之和等于4.
(Ⅰ)求椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点Q(0.
1
2
)
求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设F1,F2分别为椭C:数学公式(a>b>0)的左、右两个焦点,椭圆C上的点数学公式到两点的距离之和等于4.
(Ⅰ)求椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点数学公式求|PQ|的最大值.

查看答案和解析>>

同步练习册答案