精英家教网 > 高中数学 > 题目详情

已知圆与圆的方程分别是,那么圆与圆的位置关系是

[  ]

A.内含   B.内切   C.外切   D.相交

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆及圆的方程分别为
x2
a2
+
y2
b2
=1
和x2+y2=r2,若直线AB与圆相切于点A,与椭圆有唯一的公共点B,若a>b>0是常数,试写出AB长度随动圆半径变化的函数关系式|AB|=f(x),并求其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4—4 参数方程与极坐标(本题满分10分)

已知圆和圆的极坐标方程分别为

(1)把圆和圆的极坐标方程化为直角坐标方程;

(2)求经过两圆交点的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4—4 参数方程与极坐标(本题满分10分)

已知圆和圆的极坐标方程分别为

(1)把圆和圆的极坐标方程化为直角坐标方程;

(2)求经过两圆交点的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4—4 参数方程与极坐标(本题满分10分)

已知圆和圆的极坐标方程分别为

(1)把圆和圆的极坐标方程化为直角坐标方程;

(2)求经过两圆交点的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三第五次阶段考试理科数学试卷(解析版) 题型:解答题

已知点),过点作抛物线的切线,切点分别为(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的条件下,若以点为圆心的圆与直线相切,求圆的方程;

(Ⅲ)若直线的方程是,且以点为圆心的圆与直线相切,

求圆面积的最小值.

【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。

中∵直线与曲线相切,且过点,∴,利用求根公式得到结论先求直线的方程,再利用点P到直线的距离为半径,从而得到圆的方程。

(3)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,借助于函数的性质圆面积的最小值

(Ⅰ)由可得,.  ------1分

∵直线与曲线相切,且过点,∴,即

,或, --------------------3分

同理可得:,或----------------4分

,∴. -----------------5分

(Ⅱ)由(Ⅰ)知,,,则的斜率

∴直线的方程为:,又

,即. -----------------7分

∵点到直线的距离即为圆的半径,即,--------------8分

故圆的面积为. --------------------9分

(Ⅲ)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,    ………10分

当且仅当,即时取等号.

故圆面积的最小值

 

查看答案和解析>>

同步练习册答案