精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的上、下、左、右四个顶点分别为x轴正半轴上的某点满足.

(1)求椭圆的方程;

(2)设该椭圆的左、右焦点分别为,点在圆上,且在第一象限,过作圆的切线交椭圆于,求证:△的周长是定值.

【答案】(1) (2)见解析

【解析】试题分析:

(1) 设点的坐标为可知,可得椭圆方程;(2)法一:设,结合椭圆方程可得,在圆中, 是切点, ,同理可得,则易得结论;法二:设 的方程为,联立椭圆方程,由根与系数的关系式,结合弦长公式求出,再求出,则结论易得.

试题解析:

(1)设点G的坐标为,可知,

.

因此椭圆的方程是.

(2)方法1:,,

=,

,,

在圆中, 是切点,

==,

,

同理,,

因此的周长是定值

方法2:的方程为,

,,

,,

==

=

,

与圆相切,,,

,

,

,,

同理可得,

,

因此的周长是定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若abc为直角三角形的三边,其中c为斜边,则a2b2c2,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体OABC中,∠AOBBOCCOA90°S为顶点O所对面的面积,S1S2S3分别为侧面OABOACOBC的面积,则下列选项中对于SS1S2S3满足的关系描述正确的为(  )

A. S2SSS B.

C. SS1S2S3 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100)作为样本进行统计,请根据下面尚未完成并有局部污损的频率分布表(如图所示),解决下列问题.

组别

分组

频数

频率

1

[5060)

8

0.16

2

[6070)

a

3

[7080)

20

0.40

4

[8090)

0.08

5

[90100]

2

b

合计

(1)求出ab的值;

(2)在选取的样本中,从竞赛成绩是80分以上(80)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.

①求所抽取的2名同学中至少有1名同学来自第5组的概率;

②求所抽取的2名同学来自同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点是圆内的一个定点,点是圆上的任意一点,线段的垂直平分线和半径相交于点,当点在圆上运动时,点的轨迹为曲线.

(1)求曲线的方程;

(2)点 ,直线轴交于点,直线轴交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角ABC的对边分别为abc,已知2cosCacosB+bcosA=c

)求C;()若c=ABC的面积为,求ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图象上一点处的切线方程为.

(1)求的值;

(2)若方程内有两个不等实根,求的取值范围(其中

为自然对数的底).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设满足以下两个条件的有穷数列 期待数列

.

)分别写出一个单调递增的阶和期待数列”.

)若某期待数列是等差数列,求该数列的通项公式.

)记期待数列的前项和为,试证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某运输公司接受了向一地区每天至少运送180 t物资的任务,该公司有8辆载重为6 t的A型卡车和4辆载重为10 t的B型卡车,有10名驾驶员,每辆卡车每天往返的次数为A型卡车4次,B型卡车3次,每辆卡车每天往返的费用为A型卡车320元,B型卡车504元,则公司如何调配车辆,才能使公司所花的费用最低,最低费用为________元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)ex(ln xa)(e是自然对数的底数,

e2.71 828).

(1)yf(x)x1处的切线方程为y2exb,求ab的值.

(2)若函数f(x)在区间上单调递减,求实数a的取值范围.

查看答案和解析>>

同步练习册答案