| A. | $\frac{x^2}{25}+\frac{{9{y^2}}}{100}=1(x≠±5)$ | B. | $\frac{x^2}{25}+\frac{{100{y^2}}}{9}=1(x≠±5)$ | ||
| C. | $\frac{x^2}{25}-\frac{{9{y^2}}}{100}=1(y≠0)$ | D. | $\frac{x^2}{25}-\frac{{100{y^2}}}{9}=1(y≠0)$ |
分析 设出点M的坐标,表示出直线AM、BM的斜率,进而求出它们的斜率之积,利用斜率之积是$\frac{4}{9}$,建立方程,去掉不满足条件的点,即可得到点M的轨迹方程.
解答 解:设M(x,y),因为A(-5,0),B(5,0)
所以kAM=$\frac{y}{x+5}$(x≠-5),kBM=$\frac{y}{x-5}$(x≠5)
由已知,$\frac{y}{x+5}•\frac{y}{x-5}$=$\frac{4}{9}$
化简,得4x2-9y2=100(x≠±5)
即:$\frac{{x}^{2}}{25}-\frac{9{y}^{2}}{100}=1(y≠0)$.
故选:C.
点评 本题重点考查轨迹方程的求解,解题的关键是正确表示出直线AM、BM的斜率,利用条件建立方程.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2]∪(0,2] | B. | (-∞,-2]∪[2,+∞) | C. | (-∞,-2]∪[0,2] | D. | (-∞,-2]∪{0}∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | P?Q | B. | P?Q | C. | P=Q | D. | P∩Q=∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com