精英家教网 > 高中数学 > 题目详情
7.点A,B的坐标分别是(-5,0),(5,0),直线AM,BM相交于点M,且它们的斜率之积是$\frac{4}{9}$,则点M的轨迹方程是(  )
A.$\frac{x^2}{25}+\frac{{9{y^2}}}{100}=1(x≠±5)$B.$\frac{x^2}{25}+\frac{{100{y^2}}}{9}=1(x≠±5)$
C.$\frac{x^2}{25}-\frac{{9{y^2}}}{100}=1(y≠0)$D.$\frac{x^2}{25}-\frac{{100{y^2}}}{9}=1(y≠0)$

分析 设出点M的坐标,表示出直线AM、BM的斜率,进而求出它们的斜率之积,利用斜率之积是$\frac{4}{9}$,建立方程,去掉不满足条件的点,即可得到点M的轨迹方程.

解答 解:设M(x,y),因为A(-5,0),B(5,0)
所以kAM=$\frac{y}{x+5}$(x≠-5),kBM=$\frac{y}{x-5}$(x≠5)
由已知,$\frac{y}{x+5}•\frac{y}{x-5}$=$\frac{4}{9}$
化简,得4x2-9y2=100(x≠±5)
即:$\frac{{x}^{2}}{25}-\frac{9{y}^{2}}{100}=1(y≠0)$.
故选:C.

点评 本题重点考查轨迹方程的求解,解题的关键是正确表示出直线AM、BM的斜率,利用条件建立方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若向量$\overrightarrow a=({2,t,-1})$,$\overrightarrow b=({-2,3,1})$,若$\overrightarrow a$与$\overrightarrow b$的夹角为钝角,则实数t的取值范围为$({-∞,-3})∪({-3,\frac{5}{3}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=x5-ax3+bx+2,且f(-5)=3,则f(5)+f(-5)的值为(  )
A.0B.4C.6D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是(  )
A.24πB.30πC.48πD.60π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex-k(x+1).
(1)求f(x)的单调区间;
(2)任意实数a,b,c,其中a>0,证明:存在M,当x≥M,eax≥bx+c成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.奇函数y=f(x)在(-∞,0)上为减函数,且f(2)=0,则不等式f(x)≥0的解集为(  )
A.(-∞,-2]∪(0,2]B.(-∞,-2]∪[2,+∞)C.(-∞,-2]∪[0,2]D.(-∞,-2]∪{0}∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知cos(α+$\frac{π}{6}}$)=$\frac{2}{3}$,则sin(2α+$\frac{5π}{6}}$)的值为-$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合P={x|x=sin$\frac{(5k-9)π}{3}$,k∈Z},Q={y|y=cos$\frac{5(9-2m)π}{6}$,m∈Z},则P与Q的关系是(  )
A.P?QB.P?QC.P=QD.P∩Q=∅

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的右顶点为A,上、下顶点分别为 B2、B1,左、右焦点分别是F1、F2,若直线 B1F2与直线 AB2交于点 P,且∠B1PA为锐角,则离心率的范围是$0<e<\frac{{-1+\sqrt{5}}}{2}$.

查看答案和解析>>

同步练习册答案