精英家教网 > 高中数学 > 题目详情

【题目】如图,已知焦点在x轴上的椭圆 =1(b>0)有一个内含圆x2+y2= ,该圆的垂直于x轴的切线交椭圆于点M,N,且 (O为原点).

(1)求b的值;
(2)设内含圆的任意切线l交椭圆于点A、B.求证: ,并求| |的取值范围.

【答案】
(1)解:当MN⊥x轴时,MN的方程是x=±

设M(± ,y1),N(± ,﹣y1),

知|y1|=

即点( )在椭圆上,代入椭圆方程得b=2


(2)证明:当l⊥x轴时,由(1)知

当l不与x轴垂直时,设l的方程是:y=kx+m,即kx﹣y+m=0

= ,即3m2=8(1+k2

y=kx+m代入椭圆方程可得(1+2k2)x2+4kmx+2m2﹣8=0,

△=16k2m2﹣4(1+2k2)(2m2﹣8)= (4k2+1)>0,

设A(x1,y1),B(x2,y2

则x1+x2= ,x1x2=

所以x1x2+y1y2=(1+k2)x1x2+km(x1+x2)+m2= =0,即

即椭圆的内含圆x2+y2= 的任意切线l交椭圆于点A、B时总有

当l⊥x轴时,易知|AB|=2 =

当l不与x轴垂直时,|AB|= =

设t=1+2k2∈[1,+∞), ∈(0,1]

则|AB|= =

所以当 = 即k=± 时|AB|取最大值2

=1即k=0时|AB|取最小值

综上|AB|∈


【解析】(1)设出M,N的坐标,利用 知|y1|= ,即点( )在椭圆上,代入椭圆方程,即可求b的值;(2)分类讨论,当l⊥x轴时,由(1)知 ;当l不与x轴垂直时,设l的方程是:y=kx+m,代入椭圆方程可得(1+2k2)x2+4kmx+2m2﹣8=0,利用韦达定理证明x1x2+y1y2=0即可,利用弦长公式,结合换元、配方法,即可确定|AB|的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)=ax(a>0,a≠1)在[﹣1,2]上的最大值为4,最小值为m,且函数g(x)=(1﹣4m) 在[0,+∞)上是增函数,则m= , a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在20世纪30年代,地震科学家制定了一种表明地震能量大小的尺度,就是利用测震仪衡量地震的能量等级,等级M与地震的最大振幅A之间满足函数关系M=lgA﹣lgA0 , (其中A0表示标准地震的振幅)
(1)假设在一次4级地震中,测得地震的最大振幅是10,求M关于A的函数解析式;
(2)地震的震级相差虽小,但带来的破坏性很大,计算8级地震的最大振幅是5级地震最大振幅的多少倍.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=1﹣ ,g(x)=ln(ax2﹣3x+1),若对任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,则实数a的最大值为(
A.2
B.
C.4
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC
(1)求角C大小;
(2)求 sinA﹣cos(B+ )的最大值,并求取得最大值时角A,B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司M的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图.

(Ⅰ)由折线图可以看出,可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系.求y关于x的线性回归方程,并预测M公司2017年4月份的市场占有率;

(Ⅱ)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的AB两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:


报废年限

车型

1年

2年

3年

4年

总计

A

20

35

35

10

100

B

10

30

40

20

100

经测算,平均每辆单车每年可以带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率.如果你是M公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?

参考数据: .

参考公式:

回归直线方程为其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD﹣A1B1C1D1中,E为AB中点,F为正方形BCC1B1的中心.
(1)求直线EF与平面ABCD所成角的正切值;
(2)求异面直线A1C与EF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计.按照 的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在 的数据).

(Ⅰ)求样本容量和频率分布直方图中的的值;

(Ⅱ)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取3

名学生参加“中国谜语大会”,设随机变量表示所抽取的3名学生中得分在内的学生人数,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线y2=2px(p>0)的焦点F的直线l与抛物线在第一象限的交点为A,与抛物线的准线的交点为B,点A在抛物线准线上的射影为C,若=,=48,则抛物线的方程为(  )
A.y2=4x
B.y2=8x
C.y2=16x
D.y2=4X

查看答案和解析>>

同步练习册答案