精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
cos2x+2sinx•sin(x+
π
2
)

(Ⅰ)求f(x)的最小正周期,最大值以及取得最大值时x的集合;
(Ⅱ)若A是锐角△ABC的内角,f(A)=0,b=5,a=7,求△ABC的面积.
(Ⅰ)∵f(x)=
3
cos2x+2sinx•sin(x+
π
2
)
=
3
cos2x+2sinx•cosx

=
3
cos2x+sin2x=2sin(2x+
π
3
)
,…(4分)
∴f(x)的最小正周期是π.…(5分)
2x+
π
3
=
π
2
+2kπ,k∈Z
,解得 x=
π
12
+kπ,k∈Z

∴函数f(x)的最大值为2,此时,x值的集合为 {x|x=kπ+
π
12
,k∈z}.…(7分)
(Ⅱ)∵f(A)=sin(2A+
π
3
)=0,0<A<
π
2
∴A=
π
3
.…(9分)
在△ABC中,a2=b2+c2-2bc.cosA,c2-5c-24=0,解得c=8,或c=-3(舍),…(11分)
S△ABC=
1
2
bc•sinA=10
3
.…(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在等比数列( n∈N*)中a1>1,公比q>0,设bn=log2an,且b1+b3+b5=6,b1·b3·b5=0.
(1)求证:数列是等差数列;
(2)求前n项和Sn通项an.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知钝角三角形的三边长成等差数列,公差为1,其最大角不超过120°,则最小角余弦值的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,角A,B,C所对的边分别是a,b,c.己知csinA=
3
acosC.
(Ⅰ)求C;
(Ⅱ)若c=
7
,且sinC+sin(B-A)=3sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△ABC的内角A、B、C的对边分别为a、b、c,
3
sinCcosC-cos2C=
1
2
,且c=3.
(1)求角C;
(2)若向量
m
=(1,sinA)
n
=(2,sinB)
共线,求a、b的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,若2cosAsinB=sinC,则△ABC的形状一定是(  )
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,下列关系式不一定成立的是(  )
A.asinB=bsinAB.a=bcosC+ccosB
C.a2+b2-c2=2abcosCD.b=csinA+asinC

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A.a=cB.b=cC.2a=cD.a2+b2=c2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,角A、B、C的对边分别为a、b、c,设S为△ABC的面积,满足4S=
3
(a2+b2-c2)

(Ⅰ)求角C的大小;
(Ⅱ)若1+
tanA
tanB
=
2c
b
,且
AB
BC
=-8
,求c的值.

查看答案和解析>>

同步练习册答案