精英家教网 > 高中数学 > 题目详情
设函数,其中a为非零常数,
(1)当a=1时,求函数f(x)的单调区间.
(2)当x∈[1,2]时,不等式f(x)>2恒成立,求实数a的取值范围.
【答案】分析:(1)求出导函数,当a=1时写出函数式,对函数求导,f′(x)>0,得到f(x)在(1,+∞)上递增,得到函数的增区间.
(2)利用(1)的单调性,求出函数f(x)的极值,进一步求出函数的最值,得到参数a的范围.
解答:解:(1)∵函数,其中a为非零常数,
当a=1时,f(x)=
>0,
∴当x>1时,函数是一个增函数,
即函数的递增区间是(1,+∞)
(2)当x属于[1,2],lnx>0,
当a>0时,命题可转化为对于任意x属于[1,2],都有
令g(x)=,对函数求导得=0
∴x=时,导数等于零,
经验证这是函数的极小值,
在这个闭区间上也是最小值,
∴g(x)的最小值是g()=e-3
即当a为大于0常数且小于e-3时,不等式f(x)>2恒成立,
当a<0时,在x属于[1,2]时,不合题意.
综上可知a的取值范围是(0,e-3
点评:利用导数求函数的在区间上的最值,应该先求出导函数,判断出导函数的符号得到函数的单调性,求出函数的极值,同时求出函数的区间端点值,选出最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
1
2a
x2-lnx
 (x>0),其中a为非零常数.
(1)当a=1时,求函数f(x)的单调区间;
(2)若a>0,过点P(
a
,0)
作函数y=f(x)的导函数y=f′(x)的图象的切线,问这样的切线可作几条?并加以证明.
(3)当x∈[1,2]时,不等式f(x)>2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
12a
x2-lnx(x>0)
,其中a为非零常数,
(1)当a=1时,求函数f(x)的单调区间.
(2)当x∈[1,2]时,不等式f(x)>2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区一模)设f(x)=2cos2x+
3
sin2x
g(x)=
1
2
f(x+
12
)+x+a
,其中a为非零实常数.
(1)若f(x)=1-
3
x∈[-
π
3
π
3
]
,求x;
(2)试讨论函数g(x)在R上的奇偶性与单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2010年上海市闸北区高考数学一模试卷(文科)(解析版) 题型:解答题

,其中a为非零实常数.
(1)若,求x;
(2)试讨论函数g(x)在R上的奇偶性与单调性,并证明你的结论.

查看答案和解析>>

同步练习册答案