精英家教网 > 高中数学 > 题目详情
16.等差数列{an}中,Sn为其前n项和,已知a3+a6=16,S9-S4=65.
(1)求数列{an}的通项公式;
(2)设${b_n}={2^{a_n}}$,求数列{bn}的前n项和Tn的表达式.

分析 (1)设等差数列{an}的公差为d,a3+a6=16,S9-S4=65.可得2a1+7d=16,又$\frac{9({a}_{1}+{a}_{9})}{2}$-$\frac{4({a}_{1}+{a}_{4})}{2}$=65,化简即可得出.
(2)利用等比数列的求和公式即可得出.

解答 解:(1)设等差数列{an}的公差为d,∵a3+a6=16,S9-S4=65.
∴2a1+7d=16,又$\frac{9({a}_{1}+{a}_{9})}{2}$-$\frac{4({a}_{1}+{a}_{4})}{2}$=65,即9a5-2a1-2a4=65,化为:a1+6d=13,
解得a1=1,d=2.∴an=2n-1.
(2)∵${b_n}={2^{a_n}}={2^{2n-1}}$,
∴Tn=2+23+…+22n-1=$\frac{2}{3}({4^n}-1)=\frac{{{2^{2n+1}}}}{3}-\frac{2}{3}$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=x5+ax3+bx-6,且f(-2)=10,则f(2)=-22.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某校高一开设3门选修课,有3名同学,每人只选一门,恰有1门课程没有同学选修,共有18种不同选课方案(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}的前n项和为${S_n},{S_n}=\frac{1}{3}({a_n}-1),(n∈{N^*})$.则a10=$\frac{1}{1024}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦距为10,点P(2,1)在其渐近线上,则该双曲线的方程为(  )
A.$\frac{x^2}{80}-\frac{y^2}{20}=1$B.$\frac{x^2}{20}-\frac{y^2}{80}=1$C.$\frac{x^2}{20}-\frac{y^2}{5}=1$D.$\frac{x^2}{5}-\frac{y^2}{20}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=x3+sinx,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为(-2,$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某校周四下午第五、六两节是选修课时间,现有甲、乙、丙、丁四位教师可开课.已知甲、乙教师各自最多可以开设两节课,丙、丁教师各自最多可以开设一节课.现要求第五、六两节课中每节课恰有两位教师开课(不必考虑教师所开课的班级和内容),则不同的开课方案共有19种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在等腰直角三角形ABC中,AB=AC=2,点P是边AB上异于A,B的一点,光线从点P出发,经BC,CA发射后又回到原点P(如图).若光线QR经过△ABC的重心,则AP等于(  )
A.$\frac{1}{2}$B.1C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题中正确的是(  )
A.若p∨q为真命题,则p∧q为真命题
B.“a>0,b>0”是“$\frac{b}{a}+\frac{a}{b}≥2$”的充分必要条件
C.命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2-3x+2≠0”
D.命题p:?x0>0,使得$x_0^2+{x_0}-1<0$,则¬p:?x>0,使得x2+x-1≥0

查看答案和解析>>

同步练习册答案