精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC中,内角A,B,C依次成等差数列,其对边分别为a,b,c,且b= asinB.
(1)求内角C;
(2)若b=2,求△ABC的面积.

【答案】
(1)解:由题意,A,B,C依次成等差数列,根据三角内角和定理可得B=60°,

∵b= asinB.

由正弦定理:sinB= sinAsinB得:

sinA=

∴A=45°.

故得C=180°﹣60°﹣45°=75°.


(2)解:∵b=2,B=60°,C=75°.

正弦定理:

可得:c=

∴△ABC的面积S= bcsinA=


【解析】1、由已知可得B=60°,利用正弦定理可得sinA的值,即得A=45°,C=75°。
2、根据正弦定理可得c的值,代入到三角形的面积公式△ABC的面积S= bcsinA即得结果。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是内角A,B,C的对边,且(a+c)2=b2+3ac
(Ⅰ)求角B的大小;
(Ⅱ)若b=2,且sinB+sin(C﹣A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex , g(x)=lnx
(1)若曲线h(x)=f(x)+ax2﹣ex(a∈R)在点(1,h(1))处的切线垂直于y轴,求函数h(x)的单调区间;
(2)若函数 在区间(0,2)上无极值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个不透明的袋子装有4个完全相同的小球,球上分别标有数字为0,1,2,2,现甲从中摸出一个球后便放回,乙再从中摸出一个球,若摸出的球上数字大即获胜(若数字相同则为平局),则在甲获胜的条件下,乙摸1号球的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆x2+y2﹣2x﹣6y=0内,过点E(0,1)的最长弦和最短弦之积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1+lnx﹣ ,其中k为常数.
(1)若k=0,求曲线y=f(x)在点(1,f(1))处的切线方程.
(2)若k=5,求证:f(x)有且仅有两个零点;
(3)若k为整数,且当x>2时,f(x)>0恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,则其导函数f′(x)的图象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi , yi)(i=1,2,…,n),用最小二乘法建立的回归方程为: =0.85x﹣85.71,则下列结论中不正确的是( )
A.3与3x2+2ax+b=0具有正的线性相关关系
B.回归直线过样本点的中心(
C.若该大学某女生身高为170cm,则可断定其体重必为58.79kg
D.若该大学某女生身高增加1cm,则其体重约增加0.85kg

查看答案和解析>>

同步练习册答案