精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,AB=AC=3,BC=2,∠ABC的平分线交BC的平行线于点D,则△ABD的面积为(  )
A、3
2
B、
9
2
C、3
3
D、6
考点:相似三角形的性质
专题:计算题,立体几何
分析:先确定AD,AD上的高,再求△ABD的面积.
解答: 解:∵AB=AC=3,BC=2,∠ABC的平分线交BC的平行线于点D,
∴AD=AB=3,
∵BC上的高为
9-1
=2
2

∴AD上的高为2
2

∴△ABD的面积为
1
2
×3×2
2
=3
2

故选:A.
点评:本题考查角平分线的性质,考查三角形面积的计算,确定AD,AD上的高是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cos(
π
2
+α)=-
2
3
,则cos2α=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两定点F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,当a=3和a=5时,点P的轨迹分别为(  )
A、都是双曲线
B、都是射线
C、双曲线的一支和一条射线
D、都是双曲线的一支

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直线PA与圆O相切于点A,PBC是过点O的割线,∠APC的角平分线交AC于点E,交AB于点D,点H是线段ED的中点,连接AH并延长PC交于点F.证明:A,E,F,D四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:

离心率e=
5
-1
2
的椭圆称为优美椭圆,F、A分别是它的右焦点与左顶点,B是短轴的一个顶点,则∠ABF=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线的顶点是椭圆
x2
25
+
y2
9
=1
的中心,焦点是椭圆左焦点,该抛物线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
9
+
y2
5
=1的左、右焦点分别为F1、F2,P是椭圆上的一点,且∠F1PF2=60°,则△PF1F2的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=kx+b和曲线y=x3-3x+1相切,则斜率k最小时直线l的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知直线l的解析式是y=
4
3
x-4,并且与x轴、y轴分别交于A、B两点,一个半径为1.5的⊙C,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当⊙C与直线l相切时,求该圆运动的时间.

查看答案和解析>>

同步练习册答案