精英家教网 > 高中数学 > 题目详情
离心率e=
5
-1
2
的椭圆称为优美椭圆,F、A分别是它的右焦点与左顶点,B是短轴的一个顶点,则∠ABF=
 
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:通过椭圆的离心率公式,推出2c2=(3-
5
)a2,运用勾股定理及逆定理,验证|FA|2=|FB|2+|AB|2成立,所以∠ABF等于90°.
解答: 解:∵e=
c
a
=
5
-1
2
,∴2c2=(3-
5
)a2
在三角形FAB中,由于b2+c2=a2
|FA|=a+c,|FB|=a,|AB|=
a2+b2

∴|FA|2=(a+c)2=a2+c2+2ac,|FB|2+|AB|2=2a2+b2=3a2-c2
∴|FA|2
3+
5
2
a2
,|FB|2+|AB|2=
3+
5
2
a2

∴|FA|2=|FB|2+|AB|2
所以∠ABF等于90°.
故答案为:90°.
点评:解决此类问题关键是熟练掌握椭圆的几何性质,以及利用边长关系判断三角形的形状的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

tan
6
等于(  )
A、-1
B、-
3
3
C、
2
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

C是椭圆
x2
a2
+
y2
b2
=1(a>b>0)上位于第一象限内的点,A,B分别是椭圆的左顶点和上顶点,F是椭圆的右焦点,且OC=OF,AB∥OC,则椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=2cos(-3x+
π
4
)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)经过点(0,
3
),离心率为
1
2
,左、右焦点分别为F1(-c,0)与F2(c,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C与x轴负半轴交点为A,过点M(-4,0)作斜率为k(k≠0)的直线l,交椭圆C于B、D两点(B在M、D之间),N为BD中点,并设直线ON的斜率为k1
(i)证明:k•k1为值;
(ii)是否存在实数k,使得F1N⊥AD?如果存在,求直线l的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,AB=AC=3,BC=2,∠ABC的平分线交BC的平行线于点D,则△ABD的面积为(  )
A、3
2
B、
9
2
C、3
3
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内动点P(x,y)到定点F(1,0)的距离比它到y轴的距离大l.
(1)求动点P的轨迹ABCD的方程;
(2)已知点A(3,2),求|PA|+|PF|的最小值及此时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=2n-1,n=1,2,3,…,那么数列{an}(  )
A、是等差数列但不是等比数列
B、是等比数列但不是等差数列
C、既是等差数列又是等比数列
D、既不是等差数列也不是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(-3,2)在抛物线C:y2=2px(p>0)的准线上,过点P的直线与抛物线C相切于A,B两点,则直线AB的斜率为(  )
A、1
B、
2
C、
3
D、3

查看答案和解析>>

同步练习册答案