精英家教网 > 高中数学 > 题目详情
(2008•宁波模拟)已知函数f(x)=
1
2
(x+
a
x
),(x≠0,x∈R)在(1,+∞)
上为增函数,函数g(x)=lnx-ax,(x>0,x∈R)在(1,+∞)上为减函数.
(1)求实数a的值;
(2)求证:对于任意的x1∈[1,m](m>1),总存在x2∈[1,m],使得g(x2)+f(x1)=0.
分析:(1)由f(x)=
1
2
(1-
a
x2
)≥0
在(1,+∞)上恒成立,知a≤x2在(1,+∞)上恒成立,故a≤1.由g(x)=
1
x
-a≤0
在(1,+∞)上恒成立,知a≥
1
x
在(1,+∞)上恒成立.故a≥1.由此能求出a.
(2)依题意可知,只须证:函数y=-f(x)的值域是函数y=g(x)值域的子集.设y=-f(x)的值域为M,y=g(x)的值域为N;由y=-f(x)=-
1
2
(x+ 
1
x
)
在[1,m]上为减函数,g(x)=lnx-x在[1,m]上为减函数,知M=[-
1
2
(m+
1
m
),-1],N={lnm-m,-1}
.由此能够证明总存在x2∈[1,m],使得g(x2)+f(x1)=0.
解答:解:(1)f(x)=
1
2
(1-
a
x2
)≥0
在(1,+∞)上恒成立,
则a≤x2在(1,+∞)上恒成立,
∴a≤1.…(3分)
g(x)=
1
x
-a≤0
在(1,+∞)上恒成立,
a≥
1
x
在(1,+∞)上恒成立.
∴a≥1.…(5分)
从而为a=1…(7分)
(2)依题意可知,证明对于任意的x1∈[1,m](m>1),
总存在x2∈[1,m],使得g(x2)+f(x1)=0.
只须证:函数y=-f(x)的值域是函数y=g(x)值域的子集.
设y=-f(x)的值域为M,y=g(x)的值域为N;
由(1)可知y=-f(x)=-
1
2
(x+ 
1
x
)
在[1,m]上为减函数,
g(x)=lnx-x在[1,m]上为减函数
M=[-
1
2
(m+
1
m
),-1],N=[lnm-m,-1]
…(10分)
?(x)=x-
1
x
-2lnx,(x>1)

则∵x>1,
?′(x)=1+
1
x2
-
2
x
=
(x-1)2
x2
>0

∴y=?(x)在(1,+∞)上为增函数
∵m>1,
∴?(m)>?(1)=0
2lnm<m-
1
m

-
1
2
(m+
1
m
)>lnm-m
…(14分)
∴M⊆N,即对于任意的x1[1,m](m>1)
总存在x2∈[1,m],使得g(x2)+f(x1)=0…(15分)
点评:本题考查实数a的值的求法和证明:对于任意的x1∈[1,m](m>1),总存在x2∈[1,m],使得g(x2)+f(x1)=0.考查分析解决问题的能力,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,易出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•宁波模拟)有10件产品,其中3件是次品,从中任取两件,若ξ表示取到次品的个数,则Eξ等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宁波模拟)在等比数列{an}中,a2+a5=18,a3•a4=32,且an+1<an(n∈N*)
(1)求数列{an}的通项公式;
(2)若Tn=lga1+lga2+…+lgan,求Tn的最大值及此时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宁波模拟)已知函数f(x)=Asin(ωx+?),(A>0,ω>0,0<?<
π
2
)
图象关于点B(-
π
4
,0)
对称,点B到函数y=f(x)图象的对称轴的最短距离为
π
2
,且f(
π
2
)=1

(1)求A,ω,?的值;
(2)若0<θ<π,且f(θ)=
1
3
,求cos2θ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宁波模拟)在等比数列{an}中,若a1+a2+a3=
7
4
a2=
1
2
,则
1
a1
+
1
a2
+
1
a3
=
13
4
13
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宁波模拟)在区间(-∞,1)上递增的函数是(  )

查看答案和解析>>

同步练习册答案