【题目】已知函数
,其中
为自然对数的底数.
(1)证明:
在
上单调递增.
(2)设
,函数
,如果总存在
,对任意
,
都成立,求实数
的取值范围.
【答案】(1)证明见解析;(2)![]()
【解析】
(1)根据定义任取,
,且
,利用作差
,变形后即可判断符号,即可证明函数的单调性.
(2)根据定义可判断
和
的奇偶性.由不等式在区间上的恒成立,可知存在
,对任意
都有
.根据解析式及单调性,分别求得
的最大值和
的最大值,即可得不等式
.再利用换元法,构造对勾函数形式,即可解不等式求得
的取值范围.
(1)证明:任取,
,且
,则![]()
![]()
![]()
因为
,
,所以
,
,
,
所以
,即当
时,总有
,所以
在
上单调递增.
(2)由
,
得
是
上的偶函数,同理,
也是
上的偶函数.
总存在
,对任意
都有
,即函数
在
上的最大值不小于
,
的最大值.
由(1)知
在
上单调递增,所以当
时,
的最大值为
,
.
因为
,
,所以当
时,
的最大值为
.
所以
.
令
,则
,
令
,
易知
在
上单调递增,又
,所以
,即
,
所以
,即实数
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益
与投资额
成正比,且投资1万元时的收益为
万元,投资股票等风险型产品的收益
与投资额
的算术平方根成正比,且投资1万元时的收益为0.5万元,
(1)分别写出两种产品的收益与投资额的函数关系;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某市统考的学生数学考试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分别直方图.
![]()
(1)求这100份数学试卷成绩的中位数;
(2)从总分在
和
的试卷中随机抽取2份试卷,求抽取的2份试卷中至少有一份总分少于65分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数
在某一个周期内的图象时,列表并填入了部分数据,如下表:
| 0 |
|
|
|
|
|
|
| |||
| 0 | 2 | 0 | 0 |
(1)请将上表数据补充完整,填写在相应位置,并求出函数
的解析式;
(2)把
的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移
个单位长度,得到函数
的图象,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆
的方程为
,圆
的方程为
,动圆
与圆
内切且与圆
外切.
(1)求动圆圆心
的轨迹
的方程;
(2)已知
与
为平面内的两个定点,过
点的直线
与轨迹
交于
,
两点,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市居民自来水收费标准如下:每户每月用水量不超过4吨时,每吨为2元;当用水量超4吨时,超过部分每吨为3元.八月甲、乙两用户共交水费
元,已知甲、乙两用户月用水量分别为
吨、
吨.
(1)求
关于
的函数;
(2)若甲、乙两用户八月共交34元,分别求甲、乙两用户八月的用水量和水费.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高三理科班共有60名同学参加某次考试,从中随机挑选出5名同学,他们的数学成绩
与物理成绩
如下表:
![]()
数据表明
与
之间有较强的线性关系.
(1)求
关于
的线性回归方程;
(2)该班一名同学的数学成绩为110分,利用(1)中的回归方程,估计该同学的物理成绩;
(3)本次考试中,规定数学成绩达到125分为优秀,物理成绩达到100分为优秀.若该班数学优秀率与物理优秀率分别为
和
,且除去抽走的5名同学外,剩下的同学中数学优秀但物理不优秀的同学共有5人.能否在犯错误概率不超过0.01的前提下认为数学优秀与物理优秀有关?
参考数据:回归直线的系数
,
.
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,半圆的直径
,
为圆心,
,
为半圆上的点.
![]()
(Ⅰ)请你为
点确定位置,使
的周长最大,并说明理由;
(Ⅱ)已知
,设
,当
为何值时,
(ⅰ)四边形
的周长最大,最大值是多少?
(ⅱ)四边形
的面积最大,最大值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com