精英家教网 > 高中数学 > 题目详情
(2013•惠州一模)已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+bn=0(n∈N*)的两实根,且a1=1.
(Ⅰ)求证:数列{an-
13
×2n}
是等比数列;
(Ⅱ)Sn是数列{an}的前n项的和.问是否存在常数λ,使得bn>λSn对?n∈N*都成立,若存在,求出λ的取值范围,若不存在,请说明理由.
分析:(Ⅰ)利用韦达定理,结合等比数列的定义,即可证明数列{an-
1
3
×2n}
是等比数列;
(Ⅱ)分别求出bn、Sn,从而可得不等式,分类讨论,即可求出λ的取值范围.
解答:(Ⅰ)证明:∵an,an+1是关于x的方程x2-2n•x+bn=0(n∈N*)的两实根,
an+an+1=2n
bn=anan+1
…(2分)
an+1-
1
3
×2n+1
an-
1
3
×2n
=
2n-an-
1
3
×2n+1
an-
1
3
×2n
=
-(an-
1
3
×2n)
an-
1
3
×2n
=-1

故数列{an-
1
3
×2n}
是首项为a1-
2
3
=
1
3
,公比为-1的等比数列.…(4分)
(Ⅱ)解:由(Ⅰ)得an-
1
3
×2n=
1
3
×(-1)n-1
,即an=
1
3
[2n-(-1)n]

Sn=a1+a2+…+an=
1
3
(2+22+23+…+2n)-
1
3
[(-1)+(-1)2+…+(-1)n]

=
1
3
[2n+1-2-
(-1)n-1
2
]
.…(8分)
因此,bn=anan+1=
1
9
[2n-(-1)n]×[2n+1-(-1)n+1]=
1
9
[22n+1-(-2
)
n
 
-1]

要使bn>λSn,对?n∈N*都成立,
1
9
[22n+1-(-2)n-1]-
λ
3
[2n+1-2-
(-1)n-1
2
]>0,(n∈N*)
(*) …(10分)
①当n为正奇数时,由(*)式得:
1
9
[22n+1+2n-1]-
λ
3
(2n+1-1)>0

1
9
(2n+1-1)(2n+1)-
λ
3
(2n+1-1)>0

∵2n+1-1>0,∴λ<
1
3
(2n+1)
对任意正奇数n都成立,
因为
1
3
(2n+1)(n
为奇数)的最小值为1.所以λ<1.…(12分)
②当n为正偶数时,由(*)式得:
1
9
(22n+1-2n-1)-
λ
3
(2n+1-2)>0
,即
1
9
(2n+1+1)(2n-1)-
3
(2n-1)>0

∵2n-1>0,∴λ<
1
6
(2n+1+1)
对任意正偶数n都成立,
1
6
(2n+1+1)(n
为偶数)的最小值为
3
2
,∴λ<
3
2

∴存在常数λ,使得bn>λSn对?n∈N*都成立时λ的取值范围为(-∞,1).…(14分)
点评:本题考查等比数列的证明,考查恒成立问题,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•惠州一模)在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)(坐标系与参数方程选做题)
若直线l的极坐标方程为ρcos(θ-
π
4
)=3
2
,曲线C:ρ=1上的点到直线l的距离为d,则d的最大值为
3
2
+1
3
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)(几何证明选做题)
如图圆O的直径AB=6,P是AB的延长线上一点,过点P作圆O的切线,切点为C,连接AC,若∠CPA=30°,则PC=
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)已知向量
a
=(-1,1)
b
=(3,m)
a
∥(
a
+
b
)
,则m=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)若集合A={x|x2-4x-5=0},B={x|x2=1},则A∩B=(  )

查看答案和解析>>

同步练习册答案