精英家教网 > 高中数学 > 题目详情
an=
sin1
2
+
sin2
22
+…+
sinn
2n
,则对任意正整数m,n(m>n),都成立的是(  )
A.|an-am|<
m•n
2
B.|an-am|>
m-n
2
C.|an-am|<
1
2 n
D.|an-am|>
1
2 n
am=
sin1
2
+
sin2
22
+…+
sinm
2m

an=
sin1
2
+
sin2
22
+…+
sinn
2n

所以|an-am|
=|
sin(n+1)
2 n+1
+
sin(n+2)
2n+2
+…+
sinm
2m
|
≤|
sin(n+1)
2 n+1
|+…+|
sinm
2m
|
1
2 n+1
+…+
1
2 m

=
1
2 n
[1-(
1
2
m-n]
1
2 n

所以:|an-am|<
1
2 n

故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将函数f(x)=sin
1
4
x•sin
1
4
(x+2π)•sin
1
2
(x+3π)
在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{an}(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=2nan,数列{bn}的前n项和为Tn,求Tn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

an=
sin1
2
+
sin2
22
+…+
sinn
2n
,则对任意正整数m,n(m>n),都成立的是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

将函数f(x)=sin
1
4
x•sin
1
4
(x+2π)•sin
1
2
(x+3π)
在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{an}(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=2nan,数列{bn}的前n项和为Tn,求Tn的表达式.

查看答案和解析>>

同步练习册答案