精英家教网 > 高中数学 > 题目详情

设数列的前n项和为,已知,且,n=1,2,3,…,其中A、B为常数.

(1)求A与B的值;

(2)证明数列是等差数列;

(3)证明不等式对任何正整数m,n都成立.

答案:略
解析:

解:(1),得.把n=12分别代入,得解得,

A=20B=-8

(2)(1)知,,即

,①

将①中n换为n1,又得.②

②-①得,,即

.③

将③中n换为n1,得,④

④-③得,,∴

,又

∴数列是首项为1,公差为5的等差数列.

(3)(2)知,(),考虑,∵

,∴

,∴,因此


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的首项a1为a(a∈R)设数列的前n项和为Sn,且
1
a1
1
a2
1
a4
成等比数列.
(Ⅰ)求数列{an}的通项公式及Sn
(Ⅱ)记An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,Bn=
1
a1
+
1
a2
+…+
1
a2n-1
,当n≥2时,试比较An与Bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的首项为a(a∈R,a≠0).设数列的前n项和为Sn,且对任意正整数n都有
a2n
an
=
4n-1
2n-1

(1)求数列{an}的通项公式及Sn
(2)是否存在正整数n和k,使得Sn,Sn+1,Sn+k成等比数列?若存在,求出n和k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的首项为4,设数列的前n项和为Sn,且
1
a1
1
a2
1
a4
成等比数列.
(1)求数列{an}的通项公式an及Sn
(2)记An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,Bn=
1
a1
+
1
a2
+
1
a22
+…+
1
a2n-1
,当n≥2时,试比较An与Bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的首项a1=a,a∈N*,设数列的前n项和为Sn,且
1
a1
1
a2
1
a4
成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,若A2011=
2011
2012
,求a的值.

查看答案和解析>>

科目:高中数学 来源:2011届广西省桂林中学高三11月月考数学文卷 题型:解答题

(本小题满分12分)设数列的前n项和为Sn=2n2为等比数列,且(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列的前n项和Tn.

查看答案和解析>>

同步练习册答案