精英家教网 > 高中数学 > 题目详情
设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
图象上的任意两点,点M(
1
2
y0)
为线段AB的中点.
(1)求:y0的值.
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-2
n
)+f(
n-1
n
),  (n≥2,且n∈N*)
,求:Sn
(3)在 (2)的条件下,已知an=
2
3
                     (n=1) 
1
(Sn+1)(Sn+1+1)
 (n≥2)
,记Tn为数列{an}的前n项和,若Tn<λ(Sn+1+1)对一切n∈N*都成立,求:λ的取值范围.
分析:(1)由M为线段AB的中点,得:x1+x2=1,由此能求出y0的值.
(2)由 (1)知:x1+x2=1,f(x1)+f(x2)=y1+y2=1,Sn=f(
1
n
)+f(
2
n
)+…+f(
n-2
n
)+f(
n-1
n
)
,由倒序相加法能够求出Sn
(3)当n≥2时,an=
1
(Sn+1)(Sn+1+1)
=
4
(n+1)(n+2)
=4(
1
n+1
-
1
n+2
)
,所以Tn=a1+a2+a3+…+an=
2
3
+4(
1
3
-
1
n+2
)=
2n
n+2
,由Tn<λ(Sn+1+1)得λ>
4n
(n+2)2
=
4n
n2+4n+4
=
4
n+
4
n
+4
,由此能求出λ的取值范围.
解答:解:(1)由M为线段AB的中点,易得:x1+x2=1,
y0=
1
2
(y1+y2)=
1
2
[f(x1)+f(x2)]=
1
2
[1+log2(
x1
1-x1
x2
1-x2
)]

=
1
2
(1+log2
x1x2
x1x2
)=
1
2
(1+0)=
1
2
…(4分)
(2)由 (1)知:x1+x2=1,
f(x1)+f(x2)=y1+y2=1,
Sn=f(
1
n
)+f(
2
n
)+…+f(
n-2
n
)+f(
n-1
n
)

Sn=f(
n-1
n
)+f(
n-2
n
)+…+f(
2
n
)+f(
1
n
)

2Sn=[f(
1
n
)+f(
n-1
n
)]+[f(
2
n
)+f(
n-2
n
)]+…+[f(
n-1
n
)+f(
1
n
)]
=
n-1个
1+1+…+1
=n-1

Sn=
n-1
2
  (n≥2,n∈N*)
…(8分)
(3)当n≥2时,an=
1
(Sn+1)(Sn+1+1)
=
4
(n+1)(n+2)
=4(
1
n+1
-
1
n+2
)

Tn=a1+a2+a3+…+an=
2
3
+4(
1
3
-
1
n+2
)=
2n
n+2

由Tn<λ(Sn+1+1),
得:λ>
4n
(n+2)2
=
4n
n2+4n+4
=
4
n+
4
n
+4

n+
4
n
≥4

4
n+
4
n
+4
4
4+4
=
1
2

λ>
1
2

即λ的取值范围为(
1
2
,+∞)
…(12分)
点评:本题考查数列与不等式的综合运用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,容易出错,是高考的重点.解题时要认真审题,注意倒序相加法的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:x2=4y的焦点为F,直线l过点F交抛物线C于A、B两点.
(Ⅰ)设A(x1,y1),B(x2,y2),求
1
y1
+
1
y2
的取值范围;
(Ⅱ)是否存在定点Q,使得无论AB怎样运动都有∠AQF=∠BQF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
的图象上两点,且
OM
=
1
2
(
OA
+
OB
)
,O为坐标原点,已知点M的横坐标为
1
2

(Ⅰ)求证:点M的纵坐标为定值;
(Ⅱ)定义定义Sn=
n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求S2011
(Ⅲ)对于(Ⅱ)中的Sn,设an=
1
2Sn+1
(n∈N*)
.若对于任意n∈N*,不等式kan3-3an2+1>0恒成立,试求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
上的两点,已知O为坐标原点,椭圆的离心率e=
3
2
,短轴长为2,且
m
=(
x1
b
y1
a
),
n
=(
x2
b
y2
a
)
,若
m
n
=0

(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c)(c为半焦距),求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
图象上任意两点,且
OM
=
1
2
OA
+
OB
),已知点M的横坐标为
1
2
,且有Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
),其中n∈N*且n≥2,
(1)求点M的纵坐标值;
(2)求s2,s3,s4及Sn
(3)已知an=
1
(Sn+1)(Sn+1+1)
,其中n∈N*,且Tn为数列{an}的前n项和,若Tn≤λ(Sn+1+1)对一切n∈N*都成立,试求λ的最小正整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1)、B(x2,y2)、C(x3,y3)是抛物线y=x2上的三个动点,其中x3>x2≥0,△ABC是以B为直角顶点的等腰直角三角形.
(1)求证:直线BC的斜率等于x2+x3,也等于
x2-x1x3-x2

(2)求A、C两点之间距离的最小值.

查看答案和解析>>

同步练习册答案