精英家教网 > 高中数学 > 题目详情

等比数列{an}中,|a1|=1,a5=-8a2,a5>a2,则an=


  1. A.
    (-2)n-1
  2. B.
    -(-2n-1
  3. C.
    (-2)n
  4. D.
    -(-2)n
A
分析:根据等比数列的性质,由a5=-8a2得到等于q3,求出公比q的值,然后由a5>a2,利用等比数列的通项公式得到a1大于0,化简已知|a1|=1,得到a1的值,根据首项和公比利用等比数列的通项公式得到an的值即可.
解答:由a5=-8a2,得到=q3=-8,解得q=-2,
又a5>a2,得到16a1>-2a1,解得a1>0,所以|a1|=a1=1
则an=a1qn-1=(-2)n-1
故选A
点评:此题考查学生灵活运用等比数列的性质及前n项和的公式化简求值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等比数列{an}中,a2=18,a4=8,则公比q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a1=0,an+1=
1
2-an

(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设数列{an}的前n项和为Sn,证明:Sn<n-ln(n+1);
(Ⅲ)设bn=an
9
10
n,证明:对任意的正整数n、m,均有|bn-bm|<
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a3=2,a7=32,则a5=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,an=2×3n-1,则由此数列的奇数项所组成的新数列的前n项和为
9n-1
4
9n-1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,已知对n∈N*有a1+a2+…+an=2n-1,那么
a
2
1
+
a
2
2
+…+
a
2
n
等于(  )

查看答案和解析>>

同步练习册答案