精英家教网 > 高中数学 > 题目详情
18.有一组实验数据如表:
t1.993.04.05.16.12
y1.504.047.5012.0018.01
给出下列函数:①v=log${\;}_{\frac{1}{2}}$t;②v=$\sqrt{t}$;③v=($\frac{3}{2}$)t④y=$\frac{{t}^{2}-1}{2}$;
现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是④(填序号).

分析 因为所给数据无明显规律,且是选择题,故可用特值检验,排除错误答案即可求解.

解答 解:当t=4时,
①v=log${\;}_{\frac{1}{2}}$4=-2,故选项错误;
②v=$\sqrt{4}$=2,故选项错误;
③v=($\frac{3}{2}$)4=5.0625,故选项错误;
④y=$\frac{{4}^{2}-1}{2}$=7.5,故选项正确;
故答案为:④.

点评 本题考查函数模型的选择与应用,针对某些选择题,利用特值检验可以快速有效地解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知圆O:x2+y2=1和动点P(m,-2),圆C是以OP为直径的圆,圆O与圆C相交,设交点为A,B.
(1)问直线AB是否过定点?若过定点,请求出定点坐标;若不过定点,请说明理由;
(2)记直线OA,OB,AB的斜率分别为k1,k2,k,若k1+1,k,k2+1依次成等差数列,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若p:x(x-3)<0是q:2x-3<m的充分不必要条件,则实数m的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.自双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点 F1、F2分别向两条渐近线作垂线,垂足分别为A、B,连接AB,若梯形ABF2F1的面积为$\frac{3}{2}$,且ab=1,则双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图如图所示,且满足$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow 0$,其外接球的表面积为$\frac{16π}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.画出下列物体表示的几何体的三视图(尺寸不作严格要求)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足an=2an-1+2n-1(n∈N,N≥2),且a4=81
(1)求数列的前三项a1、a2、a3的值;
(2)是否存在一个实数λ,使得数列{$\frac{{a}_{n}+λ}{{2}^{n}}$} 为等差数列?若存在,求出λ值;若不存在,说明理由;求数列{an} 通项公式;
(3)在(2)条件下,试求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=(ax2+x-1)ex(a<0).
(1)讨论f(x)的单调性;
(2)当a=-1时,函数y=f(x)与g(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2+m的图象有三个不同的交点,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快寄樱桃的费用为y(元),所寄樱桃为x(kg).
(1)求y与x之间的函数关系式;
(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?

查看答案和解析>>

同步练习册答案