精英家教网 > 高中数学 > 题目详情

怎样判断直线与圆的位置关系比较好?在直线与圆相离的情况下,如何求圆上的点到直线距离的最大值或最小值?

答案:
解析:

在判断直线与圆的位置关系时,虽然代数法可用,但不如用几何法简单、直观,即研究圆心到直线的距离与半径的大小关系.在直线与圆相离的情况下,圆心距d>r,根据图形分析可知:圆上点到直线的最小距离是d-r,最大距离是d+r.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-2x-4y-20=0,直线l:(2m+1)x+(m+1)y-7m-4=0,m∈R.
(I)直线l是否过定点,有则求出来?判断直线与圆的位置关系及理由?
(II)求直线被圆C截得的弦长L的取值范围及L最短时弦所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0,m∈R
(1)直线l是否过定点,有则求出来?判断直线与圆的位置关系及理由?
(2)求直线被圆C截得的弦长最小时l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题.
(1)设F1、F2是椭圆M:
x2
25
+
y2
9
=1
的两个焦点,点F1、F2到直线L:
2
x-y+
5
=0的距离分别为d1、d2,试求d1•d2的值,并判断直线L与椭圆M的位置关系.
(2)设F1、F2是椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点,点F1、F2到直线L:mx+ny+p=0(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1•d2的值.
(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明.
(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明).

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省南通市高三第二次模拟考试数学试题 题型:解答题

在平面直角坐标系中,如图,已知椭圆E:的左、右顶点分别为

上、下顶点分别为.设直线的倾斜角的正弦值为,圆与以线段为直径的圆

关于直线对称.

(1)求椭圆E的离心率;

(2)判断直线与圆的位置关系,并说明理由;

(3)若圆的面积为,求圆的方程

 

查看答案和解析>>

同步练习册答案