精英家教网 > 高中数学 > 题目详情
双曲线的离心率等于
5
2
,且与椭圆
x2
9
+
y2
4
=1
有公共焦点,则此双曲线方程为
 
分析:由椭圆的方程求出焦点坐标,利用双曲线的离心率公式求出双曲线中的参数c,利用双曲线中三个参数的关系求出b2,写出双曲线的方程.
解答:解:椭圆
x2
9
+
y2
4
=1

焦点为(±
5
,0

∴双曲线的焦点为
5
,0)

c=
5
,焦点在x轴上
∵双曲线的离心率等于
5
2

∴a=2
∴b2=c2-a2=1
x2
4
-y2=1

故答案为:
x2
4
-y2=1
点评:解决圆锥曲线的方程问题,要注意椭圆中三个参数的关系为:b2+c2=a2;但双曲线中三个参数的关系为b2+a2=c2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于
5
,则该双曲线的方程为(  )
A、5x2-
4
5
y2=1
B、
x2
5
-
y2
4
=1
C、
y2
5
-
x2
4
=1
D、5x2-
5
4
y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南通一模)已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与圆x2+y2-10x=0的圆心重合,且双曲线的离心率等于
5
,则该双曲线的标准方程为
x2
5
-
y2
20
=1
x2
5
-
y2
20
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山二模)已知双曲线
x2
a2
-
y2
b2
=1的一个焦点与抛物线x=
1
4
y2的焦点重合,且双曲线的离心率等于
5
,则该双曲线的方程为
5x2-
5
4
y2=1
5x2-
5
4
y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与拋物线y2=4x的焦点重合,且双曲线的离心率等于
5
,则该双曲线的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照一模)已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与圆x2+y2-10x=0的圆心重合,且双曲线的离心率等于
5
,则该双曲线的标准方程为(  )

查看答案和解析>>

同步练习册答案