精英家教网 > 高中数学 > 题目详情
已知△ABC外接圆半径为1,且acosB+bcosA=2,则△ABC是(  )
分析:由正弦定理以及 acosB+bcosA=2,可得 2RsinAcosB+2RsinBcosA=2R,sin(A+B)=1,故有sinC=1,C=
π
2
,故△ABC为直角三角.
解答:解:由于△ABC外接圆半径为R=1,由正弦定理可得 a=2RsinA2sinA,b=2RsinB=2sinB,
再由 acosB+bcosA=2,可得 2RsinAcosB+2RsinBcosA=2R,∴sin(A+B)=1,故有sinC=1,
∴C=
π
2
,故△ABC为直角三角,
故选B.
点评:本题主要考查正弦定理、诱导公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知a=2,30°≤A≤150°,则△ABC外接圆半径取值范围是(  )
A、[1,2]
B、[1,
2
]
C、[
2
3
]
D、[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(选做题)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.
A.[选修4-1:几何证明选讲]
已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至点E.
求证:AD的延长线平分∠CDE
B.[选修4-2:矩阵与变换]
已知矩阵A=
12
-14

(1)求A的逆矩阵A-1
(2)求A的特征值和特征向量.
C.[选修4-4:坐标系与参数方程]
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为
x=
1
2
t
y=
3
2
t+1
(t为参数),求直线l被曲线C截得的线段长度.
D.[选修4-5,不等式选讲](本小题满分10分)
设a,b,c均为正实数,求证:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,已知a=2,30°≤A≤150°,则△ABC外接圆半径取值范围是(  )
A.[1,2]B.[1,
2
]
C.[
2
3
]
D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省苏北四市高三(上)9月质量抽测数学试卷(解析版) 题型:解答题

(选做题)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.
A.[选修4-1:几何证明选讲]
已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至点E.
求证:AD的延长线平分∠CDE
B.[选修4-2:矩阵与变换]
已知矩阵
(1)求A的逆矩阵A-1
(2)求A的特征值和特征向量.
C.[选修4-4:坐标系与参数方程]
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C截得的线段长度.
D.[选修4-5,不等式选讲](本小题满分10分)
设a,b,c均为正实数,求证:

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省徐州市高三(上)9月质量检测数学试卷 (解析版) 题型:解答题

(选做题)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.
A.[选修4-1:几何证明选讲]
已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至点E.
求证:AD的延长线平分∠CDE
B.[选修4-2:矩阵与变换]
已知矩阵
(1)求A的逆矩阵A-1
(2)求A的特征值和特征向量.
C.[选修4-4:坐标系与参数方程]
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C截得的线段长度.
D.[选修4-5,不等式选讲](本小题满分10分)
设a,b,c均为正实数,求证:

查看答案和解析>>

同步练习册答案