精英家教网 > 高中数学 > 题目详情
5.若tanθ=1,则sin2θ的值为(  )
A.$\frac{\sqrt{2}}{2}$B.1C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

分析 原式利用二倍角的正弦函数公式化简,分母看做“1”,利用同角三角函数间的基本关系变形,将tanθ的值代入计算即可求出值.

解答 解:∵tanθ=1,
∴sin2θ=$\frac{2sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{2tanθ}{ta{n}^{2}θ+1}$=1.
故选:B.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f${\;}_{n}(x)={x}^{n}+(1-x)^{n},x∈(0,1),n∈{N}^{*}$.
(Ⅰ)求证:21-n≤fn(x)≤1;
(Ⅱ)令b${\;}_{n}=\frac{3-2lo{g}_{3}{f}_{n}(x)}{1-lo{g}_{3}{f}_{n}(x)}$,求证:b1•b2…bn$>\sqrt{{2}^{2n}(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\frac{2{x}^{2}}{x+1}$,函数g(x)=asin($\frac{π}{6}$x)-2a+2(a>0),若存在x1∈[0,1],对任意x2∈[0,1]都有f(x1)=g(x2)成立,则实数a的取值范围是[$\frac{2}{3}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某算法流程图如图所示,则输出k的值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设△ABC的内角A,B,C所对的边长分别为a,b,c,且atanB=$\frac{20}{3}$,bsinA=4,则a等于(  )
A.3B.$\frac{8}{3}$C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在数列{an}中,若存在一个确定的正整数T,对任意n∈N*满足an+T=an,则称{an}是周期数列,T叫做它的周期.已知数列{xn}满足x1=1,x2=a(a≤1),xn+2=|xn+1-xn|,若数列{xn}的周期为3,则{xn}的前2014项的和为(  )
A.1344B.1343C.1224D.1223

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为(  )
A.2$\sqrt{5}$B.2$\sqrt{6}$C.4$\sqrt{2}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若|$\overrightarrow{e}$|=1,且$\overrightarrow{a}⊥\overrightarrow{e}$,|$\overrightarrow{a}$|=2,则|4$\overrightarrow{a}-\overrightarrow{e}$|=(  )
A.$\sqrt{37}$B.$\sqrt{65}$C.8D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正三棱台(上、下底是正三角形,上底面的中心在下底面的投影是下底面中心)的上、下底面边长分别是2cm与4cm,侧棱长是$\sqrt{6}$cm,试求该三棱台的表面积与体积.

查看答案和解析>>

同步练习册答案