| A. | 3π | B. | 4π | C. | 5π | D. | 6π |
分析 先判断三棱锥为正四面体,构造正方体,由面上的对角线构成正四面体,故可得正方体的棱长,即可求出外接球的半径,从而可得三棱锥A-BCD外接球的表面积.
解答
解:∵定点A在底面BCD上的射影为三角形BCD的中心,
而且底面BCD是正三角形,
∴三棱锥A-BCD是正三棱锥,∴AB=AC=AD,
令底面三角形BCD的重心(即中心)为P,
∵底面BCD为边长为2的正三角形,DE是BC边上的高,
∴DE=$\sqrt{3}$,∴PE=$\frac{{\sqrt{3}}}{3}$,DP=$\frac{{2\sqrt{3}}}{3}$
∵直线AE与底面BCD所成角的正切值为2$\sqrt{2}$,即$tan∠AEP=2\sqrt{2}$
∴AP=$\frac{{2\sqrt{6}}}{3}$,
∵AD2=AP2+DP2(勾股定理),∴AD=2,于是AB=AC=AD=BC=CD=DB=2,
∴三棱锥为正四面体,构造正方体,由面上的对角线构成正四面体,故正方体的棱长为$\sqrt{2}$,
∴正方体的对角线长为$\sqrt{6}$,∴外接球的半径为$\frac{{\sqrt{6}}}{2}$
∴外接球的表面积=4πr2=6π.
故选:D.
点评 本题考查直线AE与底面BCD所成角,考查三棱锥A-BCD外接球的表面积,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 504 | B. | 600 | C. | 720 | D. | 1000 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{11}{5}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com