精英家教网 > 高中数学 > 题目详情
16.已知圆E:x2+y2=1,点C(-1,0),D(0,-1),P(2,0),过P作直线l与圆E相交于A,B两点.
(1)若<$\overrightarrow{OB}$,$\overrightarrow{OP}$>=2<$\overrightarrow{OA}$,$\overrightarrow{OP}$>,求直线l的斜率;
(2)记线段AB的中点为M,求|$\overrightarrow{MC}$+$\overrightarrow{MD}$|的最小值.

分析 (1)设<$\overrightarrow{OA}$,$\overrightarrow{OP}$>=α,则<$\overrightarrow{OB}$,$\overrightarrow{OP}$>=2<$\overrightarrow{OA}$,$\overrightarrow{OP}$>=2α,(α∈$(0,\frac{π}{2})$).可得A(cosα,sinα),B(cos2α,sin2α).利用P,A,B三点共线,利用斜率计算公式、三角函数化简求值即可得出.
(2)设A(x1,y1),B(x2,y2),M(x0,y0),直线l的斜率k存在.可设直线l的方程为:y=k(x-2).与椭圆方程联立化为:(1+k2)x2-4k2x+4k2-1=0,(x1>x2).△>0,解得k2$<\frac{1}{3}$.利用根与系数的关系及其中点坐标公式可得M$(\frac{2{k}^{2}}{1+{k}^{2}},\frac{-2k}{1+{k}^{2}})$.可得$\overrightarrow{MC}+\overrightarrow{MD}$=$(\frac{-1-5{k}^{2}}{1+{k}^{2}},\frac{-1+4k-{k}^{2}}{1+{k}^{2}})$,再利用向量模的计算公式即可得出.

解答 解:(1)设<$\overrightarrow{OA}$,$\overrightarrow{OP}$>=α,则<$\overrightarrow{OB}$,$\overrightarrow{OP}$>=2<$\overrightarrow{OA}$,$\overrightarrow{OP}$>=2α,(α∈$(0,\frac{π}{2})$).
可得A(cosα,sinα),B(cos2α,sin2α).
∵P,A,B三点共线,
∴$\frac{sinα}{cosα-2}$=$\frac{sin2α}{cos2α-2}$,
化为:cosα=$\frac{3}{4}$,则sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{\sqrt{7}}{4}$.
∴直线l的斜率k=$\frac{\frac{\sqrt{7}}{4}}{\frac{3}{4}-2}$=-$\frac{\sqrt{7}}{5}$.
(2)设A(x1,y1),B(x2,y2),M(x0,y0),直线l的斜率k存在.
可设直线l的方程为:y=k(x-2).
联立$\left\{\begin{array}{l}{y=k(x-2)}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$,化为:(1+k2)x2-4k2x+4k2-1=0,(x1>x2).
△=16k4-4(1+k2)(4k2-1)=4(1-3k2)>0,解得k2$<\frac{1}{3}$.
x1+x2=$\frac{4{k}^{2}}{1+{k}^{2}}$.
x0=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{2{k}^{2}}{1+{k}^{2}}$,y0=$\frac{{y}_{1}+{y}_{2}}{2}$=$\frac{k({x}_{1}+{x}_{2}-4)}{2}$=$\frac{-2k}{1+{k}^{2}}$.
∴M$(\frac{2{k}^{2}}{1+{k}^{2}},\frac{-2k}{1+{k}^{2}})$.
∴$\overrightarrow{MC}+\overrightarrow{MD}$=$(\frac{-1-5{k}^{2}}{1+{k}^{2}},\frac{-1+4k-{k}^{2}}{1+{k}^{2}})$,
∴$|\overrightarrow{MC}+\overrightarrow{MD}{|}^{2}$=$(\frac{1+5{k}^{2}}{1+{k}^{2}})^{2}$+$(\frac{{k}^{2}-4k+1}{1+{k}^{2}})^{2}$=$\frac{26{k}^{4}-8{k}^{3}+28{k}^{2}-8k+2}{{k}^{4}+2{k}^{2}+1}$=26-$\frac{8(k+3)}{{k}^{2}+1}$,
令f(k)=$\frac{k+3}{{k}^{2}+1}$,则f′(k)=$\frac{{k}^{2}+1-2k(k+3)}{({k}^{2}+1)^{2}}$=$\frac{-{k}^{2}-6k+1}{({k}^{2}+1)^{2}}$=$\frac{-[k-(-3+\sqrt{10})][k-(-3-\sqrt{10})]}{({k}^{2}+1)^{2}}$,$(-\frac{\sqrt{3}}{3}<k<\frac{\sqrt{3}}{3})$.
可知k=$\sqrt{10}-3$时,f(k)取得最大值,$f(\sqrt{10}-3)$=$\frac{\sqrt{10}-3+3}{(\sqrt{10}-3)^{2}+1}$=$\frac{\sqrt{10}}{20-6\sqrt{10}}$.
∴$|\overrightarrow{MC}+\overrightarrow{MD}{|}^{2}$的最小值=26-8×$\frac{\sqrt{10}}{20-6\sqrt{10}}$=14-4$\sqrt{10}$.
∴|$\overrightarrow{MC}$+$\overrightarrow{MD}$|的最小值为$\sqrt{10}$-2.

点评 本题考查了直线与圆相交问题、中点坐标公式、一元二次方程的根与系数的关系、向量模的计算公式、利用导数研究函数的单调性、斜率计算公式、三角函数化简求值,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,在圆的内接四边形ABCD中,∠DAC=30°,∠CAB=45°,且$\widehat{AD}=\widehat{BC}$,过点A作圆的切线交CD延长线于点T.
(1)求∠DAT.
(2)证明:BC•AD=AB•DT.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,AB是圆O的直径,弦BD,CA的延长线相交于点E,过E作BA的延长线的垂线,垂足为F.求证:AB2=BE•BD-AE•AC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,设f(x)=$|\begin{array}{l}{mx}&{m}\\{2x}&{x+1}\end{array}|$
(1)若不等式f(x)<1的解集为R,求m的取值范围.
(2)若任意的x∈[1,3],不等式f(x)<6-m恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=x+4$\sqrt{x}$-1,则函数的定义域是[0,+∞);函数的值域是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[0,1],则f'(n)+f(m)的最大值是(  )
A.-9B.-1C.1D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=alnx+x+1+$\frac{a+1}{x}$(a∈R).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)已知h(x)=$\frac{2{e}^{x-1}}{x}$+a,若x1,x2是f(x)的两个极值点,且?m∈(0,2],f(x1)+f(x2)>h(m),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知在△ABC中,A=30°,B=45°,a=2$\sqrt{2}$,则b=(  )
A.4B.$4\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在一次学业水平测试中,小明成绩在60-80分的概率为0.5,成绩在60分以下的概率为0.3,若规定考试成绩在80分以上为优秀,则小明成绩为优秀的概率为(  )
A.0.2B.0.3C.0.5D.0.8

查看答案和解析>>

同步练习册答案