精英家教网 > 高中数学 > 题目详情
若数列{an}是等比数列,则下列命题正确的个数是(  )
①{an2},{a2n}是等比数列   
②{lgan}是等差数列
③{
1
an
},{|an|}是等比数列   
④{can},{an±k}(k≠0)是等比数列.
A.4B.3C.2D.1
若数列{an}是等比数列,且首项为a1,公比为q,则an=a1•qn-1
an2=a12•q2(n-1),这是一个以a12为首项,以q2为公比的等比数列,a2n=a1•q2n-1=a1q•q2(n-1)=a2•q2(n-1),这是一个以a2为首项,以q2为公比的等比数列,故①正确;
当q<0时,数列{an}存在负项,此时lgan无意义,故②错误;
1
an
=
1
a1
1
q
(n-1),这是一个以
1
a1
为首项,以
1
q
为公比的等比数列,|an|=|a1|•|q|n-1,这是一个以|a1|为首项,以|q|为公比的等比数列,故③正确;
当c=0时,can=0,此时数列{can}不是等比数列,当k=-a1时,a1+k=0,此时{an+k}不是等比数列,当k=a1时,a1-k=0,此时{an-k}不是等比数列,故④错误
故选C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网给出下列四个命题:
①已知函数y=2sin(x+φ)(0<φ<π)的图象如图所示,则?=
π
6
5
6
π

②已知O、A、B、C是平面内不同的四点,且
OA
OB
OC
,则α+β=1是A、B、C三点共线的充要条件;
③若数列an恒满足
a
2
n+1
a
2
n
=p
(p为正常数,n∈N*),则称数列an是“等方比数列”.根据此定义可以断定:若数列an是“等方比数列”,则它一定是等比数列;
④求解关于变量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到该方程中变量n的所有取值的表达式为n=
1
12
(4k+8)

(k∈N*).
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列一些说法:
(1)已知△ABC中,acosB=bcosA,则△ABC为等腰或直角三角形.
(2)已知△ABC中,acosA=bcosB,则△ABC为等腰或直角三角形.
(3)已知数列{an}满足
a
2
n+1
a
2
n
=p(p为正常数,n∈N*),则称{an}为“等方比数列”.若数列{an}是等方比数列则数列{an}必是等比数列.
(4)等比数列{an}的前3项的和等于首项的3倍,则该等比数列的公比为-2.
其中正确的说法的序号依次是
(2)
(2)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年安徽省六安一中高三(下)第七次月考数学试卷(理科)(解析版) 题型:填空题

给出下列四个命题:
①已知函数y=2sin(x+φ)(0<φ<π)的图象如图所示,则
②已知O、A、B、C是平面内不同的四点,且,则α+β=1是A、B、C三点共线的充要条件;
③若数列an恒满足(p为正常数,n∈N*),则称数列an是“等方比数列”.根据此定义可以断定:若数列an是“等方比数列”,则它一定是等比数列;
④求解关于变量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到该方程中变量n的所有取值的表达式为
(k∈N*).
其中正确命题的序号是   

查看答案和解析>>

科目:高中数学 来源:2012年人教B版高中数学必修5 2.3等比数列练习卷(解析版) 题型:选择题

已知数列{an}的前n项和为Sn=b×2n+a(a0,b0),若数列{an}是等比数例,则a、b应满足的条件为(   )

(A)a-b=0   (B)a-b0   (C)a+b=0   (D)a+b0

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省唐山市高一(下)期中数学试卷(解析版) 题型:填空题

给出下列一些说法:
(1)已知△ABC中,acosB=bcosA,则△ABC为等腰或直角三角形.
(2)已知△ABC中,acosA=bcosB,则△ABC为等腰或直角三角形.
(3)已知数列{an}满足=p(p为正常数,n∈N*),则称{an}为“等方比数列”.若数列{an}是等方比数列则数列{an}必是等比数列.
(4)等比数列{an}的前3项的和等于首项的3倍,则该等比数列的公比为-2.
其中正确的说法的序号依次是   

查看答案和解析>>

同步练习册答案