精英家教网 > 高中数学 > 题目详情

己知斜率为1的直线l与双曲线C(a>0,b>0)相交于BD两点,且BD的中点为M(1,3).

(Ⅰ)求C的离心率;

(Ⅱ)设C的右顶点为A,右焦点为F,|DF|·|BF|=17,证明:过ABD三点的圆与x轴相切.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知斜率为1的直线l与双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
相交于B、D两点,且BD的中点为M(1,3).
(Ⅰ)求C的离心率;
(Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

    己知斜率为1的直线l与双曲线C相交于BD两点,且BD的中点为

   (Ⅰ)求C的离心率;

   (Ⅱ)设C的右顶点为A,右焦点为F,证明:过ABD三点的圆与x轴相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

    己知斜率为1的直线l与双曲线C相交于BD两点,且BD的中点为

   (Ⅰ)求C的离心率;

   (Ⅱ)设C的右顶点为A,右焦点为F,证明:过ABD三点的圆与x轴相切.

查看答案和解析>>

科目:高中数学 来源:2010年高考试题(全国卷2)解析版(理) 题型:解答题

 

    己知斜率为1的直线l与双曲线C相交于BD两点,且BD的中点为

   (Ⅰ)求C的离心率;

   (Ⅱ)设C的右顶点为A,右焦点为F,证明:过ABD三点的圆与x轴相切.

 

 

查看答案和解析>>

科目:高中数学 来源:2010年全国统一高考数学试卷Ⅱ(文科)(大纲版)(解析版) 题型:解答题

己知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为M(1,3).
(Ⅰ)求C的离心率;
(Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.

查看答案和解析>>

同步练习册答案