精英家教网 > 高中数学 > 题目详情
设椭圆+=1(a>b>0)的左,右焦点分别为F1,F2,点P(a,b)满足|PF2|=|F1F2|.
(1)求椭圆的离心率e;
(2)设直线PF2与椭圆相交于A,B两点.若直线PF2与圆(x+1)2+(y-)2=16相交于M,N两点,且|MN|=|AB|,求椭圆的方程.
(1)    (2) +=1

解:(1)设F1(-c,0),F2(c,0)(c>0),
因为|PF2|=|F1F2|,
所以=2c,
整理得2(2+-1=0,
=-1(舍去),或=,
所以e=.
(2)由(1)知a=2c,b=c,
可得椭圆方程为3x2+4y2=12c2,
直线PF2的方程为y=(x-c).
A、B两点的坐标满足方程组
消去y并整理,得5x2-8cx=0,
解得x1=0,x2=c.
得方程组的解 
不妨设A(c,c),B(0,-c),
所以|AB|==c.
于是|MN|=|AB|=2c.
圆心(-1,)到直线PF2的距离
d==.
因为d2+=42,
所以(2+c)2+c2=16.
整理得7c2+12c-52=0,
解得c=-(舍去)或c=2.
所以椭圆方程为+=1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

动点到定点与到定直线,的距离之比为
(1)求的轨迹方程;
(2)过点的直线(与x轴不重合)与(1)中轨迹交于两点.探究是否存在一定点E(t,0),使得x轴上的任意一点(异于点E、F)到直线EM、EN的距离相等?若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆=1的离心率为,则k的值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P为椭圆=1上一点,M、N分别是圆(x+3) 2+y2=4和(x-3) 2+y2=1上的点,则|PM|+|PN|的取值范围是 (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:+=1(a>b>0)的离心率为.双曲线x2-y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为(  )
A.+=1B.+=1
C.+=1D.+=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A、B分别为椭圆+=1(a>b>0)的左、右顶点,C(0,b),直线l:x=2a与x轴交于点D,与直线AC交于点P,若∠DBP=,则此椭圆的离心率为(  )
(A)      (B)     (C)      (D)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆Γ:  +=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2c.若直线y=(x+c)与椭圆Γ的一个交点满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是(  )
A.+=1B.+=1
C.+=1D.+=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆中有如下结论:椭圆上斜率为1的弦的中点在直线上,类比上述结论:双曲线上斜率为1的弦的中点在直线              上

查看答案和解析>>

同步练习册答案