精英家教网 > 高中数学 > 题目详情
椭圆中有如下结论:椭圆上斜率为1的弦的中点在直线上,类比上述结论:双曲线上斜率为1的弦的中点在直线              上

试题分析:将椭圆方程中的变为变为,右边变为0,于此得到椭圆上斜率为1的弦的中点在直线上.
类比上述结论,将双曲线的方程作为上述变换可知:双曲线上斜率为1的弦的中点在直线.
不妨设弦的两个端点为,则,中点设为,则,将上述两端点代入双曲线方程得
两式相减得,而
,化简得
,于是在直线上.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,椭圆C:的离心率为,短轴长是2.

(1)求a,b的值;
(2)设椭圆C的下顶点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与椭圆C的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,当时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A,B,C是椭圆W:+y2=1上的三个点,O是坐标原点.
(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;
(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆+=1(a>b>0)的左,右焦点分别为F1,F2,点P(a,b)满足|PF2|=|F1F2|.
(1)求椭圆的离心率e;
(2)设直线PF2与椭圆相交于A,B两点.若直线PF2与圆(x+1)2+(y-)2=16相交于M,N两点,且|MN|=|AB|,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点,点为其上的动点,当∠为钝角时,点横坐标的取值范围是__________ .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆经过原点,且焦点分别为,则其离心率为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设P为椭圆+=1(a>b>0)上的任意一点,F1为椭圆的一个焦点,则|PF1|的取值范围为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=kx+1,当k变化时,此直线被椭圆+y2=1截得的最大弦长是(  )
A.4B.
C.2D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知曲线C上的动点M(x,y),向量a=(x+2,y)和b=(x-2,y)满足|a|+|b|=6,则曲线C的离心率是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案