精英家教网 > 高中数学 > 题目详情
设a,b,c分别是△ABC角A,B,C所对的边,sin2A+sin2B-sinAsinB=sin2C,且满足ab=4,则△ABC的面积为
3
3
分析:利用正弦定理化简已知的等式,得到三边的关系式,再利用余弦定理表示出cosC,把得到的三边关系式变形后代入求出cosC的值,根据C为三角形的内角,利用同角三角函数间的基本关系求出sinC的值,由ab及sinC的值,利用三角形的面积公式即可求出三角形ABC的面积.
解答:解:利用正弦定理化简sin2A+sin2B-sinAsinB=sin2C,
得:a2+b2-ab=c2,即a2+b2-c2=ab,
∴根据余弦定理得:cosC=
a2+b2-c2
2ab
=
1
2

∵C为三角形的内角,
∴sinC=
1-cos2C
=
3
2
,又ab=4,
则S△ABC=
1
2
ab•sinC=
3

故答案为:
3
点评:此题考查了正弦、余弦定理,三角形的面积公式,以及同角三角函数间的基本关系,正弦、余弦定理很好的建立了三角形的边角关系,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a、b、c分别是方程2x=log
1
2
x,(
1
2
)
x
=log
1
2
x,(
1
2
)
x
=log2x
的实数根,则(  )
A、c<b<a
B、a<b<c
C、b<a<c
D、c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b、c分别是△ABC三个内角∠A、∠B、∠C的对边,若向量
m
=(1-cos(A+B),cos
A-B
2
)
n
=(
5
8
,cos
A-B
2
)
m
n
=
9
8

(1)求tanA•tanB的值;
(2)求
absinC
a2+b2-c2
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b、c分别是函数f(x)=(
1
2
)x-log2x,g(x)=2x-log
1
2
x,h(x)=(
1
2
)x-log
1
2
x
的零点,则a、b、c的大小关系为(  )
A、b<c<a
B、a<b<c
C、b<a<c
D、c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b、c分别是先后掷一枚质地均匀的正方体骰子三次得到的点数.
(1)求使函数f(x)=
1
3
bx3+
1
2
(a+c)x2+(a+c-b)x-4
在R上不存在极值点的概率;
(2)设随机变量ξ=|a-b|,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设a,b,c分别是三个内角A,B,C所对的边,b=2,c=1,面积S△ABC=
1
2
,则内角A的大小为
π
6
6
π
6
6

查看答案和解析>>

同步练习册答案